Abstract:Numerous industrial sectors necessitate models capable of providing robust forecasts across various horizons. Despite the recent strides in crafting specific architectures for time-series forecasting and developing pre-trained universal models, a comprehensive examination of their capability in accommodating varied-horizon forecasting during inference is still lacking. This paper bridges this gap through the design and evaluation of the Elastic Time-Series Transformer (ElasTST). The ElasTST model incorporates a non-autoregressive design with placeholders and structured self-attention masks, warranting future outputs that are invariant to adjustments in inference horizons. A tunable version of rotary position embedding is also integrated into ElasTST to capture time-series-specific periods and enhance adaptability to different horizons. Additionally, ElasTST employs a multi-scale patch design, effectively integrating both fine-grained and coarse-grained information. During the training phase, ElasTST uses a horizon reweighting strategy that approximates the effect of random sampling across multiple horizons with a single fixed horizon setting. Through comprehensive experiments and comparisons with state-of-the-art time-series architectures and contemporary foundation models, we demonstrate the efficacy of ElasTST's unique design elements. Our findings position ElasTST as a robust solution for the practical necessity of varied-horizon forecasting.
Abstract:Dense high dimensional vectors are becoming increasingly vital in fields such as computer vision, machine learning, and large language models (LLMs), serving as standard representations for multimodal data. Now the dimensionality of these vector can exceed several thousands easily. Despite the nearest neighbor search (NNS) over these dense high dimensional vectors have been widely used for retrieval augmented generation (RAG) and many other applications, the effectiveness of NNS in such a high-dimensional space remains uncertain, given the possible challenge caused by the "curse of dimensionality." To address above question, in this paper, we conduct extensive NNS studies with different distance functions, such as $L_1$ distance, $L_2$ distance and angular-distance, across diverse embedding datasets, of varied types, dimensionality and modality. Our aim is to investigate factors influencing the meaningfulness of NNS. Our experiments reveal that high-dimensional text embeddings exhibit increased resilience as dimensionality rises to higher levels when compared to random vectors. This resilience suggests that text embeddings are less affected to the "curse of dimensionality," resulting in more meaningful NNS outcomes for practical use. Additionally, the choice of distance function has minimal impact on the relevance of NNS. Our study shows the effectiveness of the embedding-based data representation method and can offer opportunity for further optimization of dense vector-related applications.
Abstract:Graph Neural Networks (GNNs), like other neural networks, have shown remarkable success but are hampered by the complexity of their architecture designs, which heavily depend on specific data and tasks. Traditionally, designing proper architectures involves trial and error, which requires intensive manual effort to optimize various components. To reduce human workload, researchers try to develop automated algorithms to design GNNs. However, both experts and automated algorithms suffer from two major issues in designing GNNs: 1) the substantial computational resources expended in repeatedly trying candidate GNN architectures until a feasible design is achieved, and 2) the intricate and prolonged processes required for humans or algorithms to accumulate knowledge of the interrelationship between graphs, GNNs, and performance. To further enhance the automation of GNN architecture design, we propose a computation-friendly way to empower Large Language Models (LLMs) with specialized knowledge in designing GNNs, thereby drastically shortening the computational overhead and development cycle of designing GNN architectures. Our framework begins by establishing a knowledge retrieval pipeline that comprehends the intercorrelations between graphs, GNNs, and performance. This pipeline converts past model design experiences into structured knowledge for LLM reference, allowing it to quickly suggest initial model proposals. Subsequently, we introduce a knowledge-driven search strategy that emulates the exploration-exploitation process of human experts, enabling quick refinement of initial proposals within a promising scope. Extensive experiments demonstrate that our framework can efficiently deliver promising (e.g., Top-5.77%) initial model proposals for unseen datasets within seconds and without any prior training and achieve outstanding search performance in a few iterations.
Abstract:Vertical Federated Learning (VFL) has emerged as a critical approach in machine learning to address privacy concerns associated with centralized data storage and processing. VFL facilitates collaboration among multiple entities with distinct feature sets on the same user population, enabling the joint training of predictive models without direct data sharing. A key aspect of VFL is the fair and accurate evaluation of each entity's contribution to the learning process. This is crucial for maintaining trust among participating entities, ensuring equitable resource sharing, and fostering a sustainable collaboration framework. This paper provides a thorough review of contribution evaluation in VFL. We categorize the vast array of contribution evaluation techniques along the VFL lifecycle, granularity of evaluation, privacy considerations, and core computational methods. We also explore various tasks in VFL that involving contribution evaluation and analyze their required evaluation properties and relation to the VFL lifecycle phases. Finally, we present a vision for the future challenges of contribution evaluation in VFL. By providing a structured analysis of the current landscape and potential advancements, this paper aims to guide researchers and practitioners in the design and implementation of more effective, efficient, and privacy-centric VFL solutions. Relevant literature and open-source resources have been compiled and are being continuously updated at the GitHub repository: \url{https://github.com/cuiyuebing/VFL_CE}.
Abstract:Traffic prediction has long been a focal and pivotal area in research, witnessing both significant strides from city-level to road-level predictions in recent years. With the advancement of Vehicle-to-Everything (V2X) technologies, autonomous driving, and large-scale models in the traffic domain, lane-level traffic prediction has emerged as an indispensable direction. However, further progress in this field is hindered by the absence of comprehensive and unified evaluation standards, coupled with limited public availability of data and code. This paper extensively analyzes and categorizes existing research in lane-level traffic prediction, establishes a unified spatial topology structure and prediction tasks, and introduces a simple baseline model, GraphMLP, based on graph structure and MLP networks. We have replicated codes not publicly available in existing studies and, based on this, thoroughly and fairly assessed various models in terms of effectiveness, efficiency, and applicability, providing insights for practical applications. Additionally, we have released three new datasets and corresponding codes to accelerate progress in this field, all of which can be found on https://github.com/ShuhaoLii/TITS24LaneLevel-Traffic-Benchmark.
Abstract:Trajectory computing is a pivotal domain encompassing trajectory data management and mining, garnering widespread attention due to its crucial role in various practical applications such as location services, urban traffic, and public safety. Traditional methods, focusing on simplistic spatio-temporal features, face challenges of complex calculations, limited scalability, and inadequate adaptability to real-world complexities. In this paper, we present a comprehensive review of the development and recent advances in deep learning for trajectory computing (DL4Traj). We first define trajectory data and provide a brief overview of widely-used deep learning models. Systematically, we explore deep learning applications in trajectory management (pre-processing, storage, analysis, and visualization) and mining (trajectory-related forecasting, trajectory-related recommendation, trajectory classification, travel time estimation, anomaly detection, and mobility generation). Notably, we encapsulate recent advancements in Large Language Models (LLMs) that hold the potential to augment trajectory computing. Additionally, we summarize application scenarios, public datasets, and toolkits. Finally, we outline current challenges in DL4Traj research and propose future directions. Relevant papers and open-source resources have been collated and are continuously updated at: \href{https://github.com/yoshall/Awesome-Trajectory-Computing}{DL4Traj Repo}.
Abstract:Vertical Federated Learning (VFL) has emerged as a popular machine learning paradigm, enabling model training across the data and the task parties with different features about the same user set while preserving data privacy. In production environment, VFL usually involves one task party and one data party. Fair and economically efficient feature trading is crucial to the commercialization of VFL, where the task party is considered as the data consumer who buys the data party's features. However, current VFL feature trading practices often price the data party's data as a whole and assume transactions occur prior to the performing VFL. Neglecting the performance gains resulting from traded features may lead to underpayment and overpayment issues. In this study, we propose a bargaining-based feature trading approach in VFL to encourage economically efficient transactions. Our model incorporates performance gain-based pricing, taking into account the revenue-based optimization objectives of both parties. We analyze the proposed bargaining model under perfect and imperfect performance information settings, proving the existence of an equilibrium that optimizes the parties' objectives. Moreover, we develop performance gain estimation-based bargaining strategies for imperfect performance information scenarios and discuss potential security issues and solutions. Experiments on three real-world datasets demonstrate the effectiveness of the proposed bargaining model.
Abstract:Trust plays an essential role in an individual's decision-making. Traditional trust prediction models rely on pairwise correlations to infer potential relationships between users. However, in the real world, interactions between users are usually complicated rather than pairwise only. Hypergraphs offer a flexible approach to modeling these complex high-order correlations (not just pairwise connections), since hypergraphs can leverage hyperedeges to link more than two nodes. However, most hypergraph-based methods are generic and cannot be well applied to the trust prediction task. In this paper, we propose an Adaptive Hypergraph Network for Trust Prediction (AHNTP), a novel approach that improves trust prediction accuracy by using higher-order correlations. AHNTP utilizes Motif-based PageRank to capture high-order social influence information. In addition, it constructs hypergroups from both node-level and structure-level attributes to incorporate complex correlation information. Furthermore, AHNTP leverages adaptive hypergraph Graph Convolutional Network (GCN) layers and multilayer perceptrons (MLPs) to generate comprehensive user embeddings, facilitating trust relationship prediction. To enhance model generalization and robustness, we introduce a novel supervised contrastive learning loss for optimization. Extensive experiments demonstrate the superiority of our model over the state-of-the-art approaches in terms of trust prediction accuracy. The source code of this work can be accessed via https://github.com/Sherry-XU1995/AHNTP.
Abstract:Federated learning (FL) is increasingly recognized for its efficacy in training models using locally distributed data. However, the proper valuation of shared data in this collaborative process remains insufficiently addressed. In this work, we frame FL as a marketplace of models, where clients act as both buyers and sellers, engaging in model trading. This FL market allows clients to gain monetary reward by selling their own models and improve local model performance through the purchase of others' models. We propose an auction-based solution to ensure proper pricing based on performance gain. Incentive mechanisms are designed to encourage clients to truthfully reveal their model valuations. Furthermore, we introduce a reinforcement learning (RL) framework for marketing operations, aiming to achieve maximum trading volumes under the dynamic and evolving market status. Experimental results on four datasets demonstrate that the proposed FL market can achieve high trading revenue and fair downstream task accuracy.
Abstract:ID-based Recommender Systems (RecSys), where each item is assigned a unique identifier and subsequently converted into an embedding vector, have dominated the designing of RecSys. Though prevalent, such ID-based paradigm is not suitable for developing transferable RecSys and is also susceptible to the cold-start issue. In this paper, we unleash the boundaries of the ID-based paradigm and propose a Pure Multi-Modality based Recommender system (PMMRec), which relies solely on the multi-modal contents of the items (e.g., texts and images) and learns transition patterns general enough to transfer across domains and platforms. Specifically, we design a plug-and-play framework architecture consisting of multi-modal item encoders, a fusion module, and a user encoder. To align the cross-modal item representations, we propose a novel next-item enhanced cross-modal contrastive learning objective, which is equipped with both inter- and intra-modality negative samples and explicitly incorporates the transition patterns of user behaviors into the item encoders. To ensure the robustness of user representations, we propose a novel noised item detection objective and a robustness-aware contrastive learning objective, which work together to denoise user sequences in a self-supervised manner. PMMRec is designed to be loosely coupled, so after being pre-trained on the source data, each component can be transferred alone, or in conjunction with other components, allowing PMMRec to achieve versatility under both multi-modality and single-modality transfer learning settings. Extensive experiments on 4 sources and 10 target datasets demonstrate that PMMRec surpasses the state-of-the-art recommenders in both recommendation performance and transferability. Our code and dataset is available at: https://github.com/ICDE24/PMMRec.