Abstract:Annotation through crowdsourcing draws incremental attention, which relies on an effective selection scheme given a pool of workers. Existing methods propose to select workers based on their performance on tasks with ground truth, while two important points are missed. 1) The historical performances of workers in other tasks. In real-world scenarios, workers need to solve a new task whose correlation with previous tasks is not well-known before the training, which is called cross-domain. 2) The dynamic worker performance as workers will learn from the ground truth. In this paper, we consider both factors in designing an allocation scheme named cross-domain-aware worker selection with training approach. Our approach proposes two estimation modules to both statistically analyze the cross-domain correlation and simulate the learning gain of workers dynamically. A framework with a theoretical analysis of the worker elimination process is given. To validate the effectiveness of our methods, we collect two novel real-world datasets and generate synthetic datasets. The experiment results show that our method outperforms the baselines on both real-world and synthetic datasets.
Abstract:In the rapidly evolving landscape of 5G and beyond 5G (B5G) mobile cellular communications, efficient data compression and reconstruction strategies become paramount, especially in massive multiple-input multiple-output (MIMO) systems. A critical challenge in these systems is the capacity-limited fronthaul, particularly in the context of the Ethernet-based common public radio interface (eCPRI) connecting baseband units (BBUs) and remote radio units (RRUs). This capacity limitation hinders the effective handling of increased traffic and data flows. We propose a novel two-stage compression approach to address this bottleneck. The first stage employs sparse Tucker decomposition, targeting the weight tensor's low-rank components for compression. The second stage further compresses these components using complex givens decomposition and run-length encoding, substantially improving the compression ratio. Our approach specifically targets the Zero-Forcing (ZF) beamforming weights in BBUs. By reconstructing these weights in RRUs, we significantly alleviate the burden on eCPRI traffic, enabling a higher number of concurrent streams in the radio access network (RAN). Through comprehensive evaluations, we demonstrate the superior effectiveness of our method in Channel State Information (CSI) compression, paving the way for more efficient 5G/B5G fronthaul links.
Abstract:With the rapid development of smart mobile devices, the car-hailing platforms (e.g., Uber or Lyft) have attracted much attention from both the academia and the industry. In this paper, we consider an important dynamic car-hailing problem, namely \textit{maximum revenue vehicle dispatching} (MRVD), in which rider requests dynamically arrive and drivers need to serve as many riders as possible such that the entire revenue of the platform is maximized. We prove that the MRVD problem is NP-hard and intractable. In addition, the dynamic car-hailing platforms have no information of the future riders, which makes the problem even harder. To handle the MRVD problem, we propose a queueing-based vehicle dispatching framework, which first uses existing machine learning algorithms to predict the future vehicle demand of each region, then estimates the idle time periods of drivers through a queueing model for each region. With the information of the predicted vehicle demands and estimated idle time periods of drivers, we propose two batch-based vehicle dispatching algorithms to efficiently assign suitable drivers to riders such that the expected overall revenue of the platform is maximized during each batch processing. Through extensive experiments, we demonstrate the efficiency and effectiveness of our proposed approaches over both real and synthetic datasets.