Abstract:In the drug discovery process, the low success rate of drug candidate screening often leads to insufficient labeled data, causing the few-shot learning problem in molecular property prediction. Existing methods for few-shot molecular property prediction overlook the sample selection bias, which arises from non-random sample selection in chemical experiments. This bias in data representativeness leads to suboptimal performance. To overcome this challenge, we present a novel method named contextual representation anchor Network (CRA), where an anchor refers to a cluster center of the representations of molecules and serves as a bridge to transfer enriched contextual knowledge into molecular representations and enhance their expressiveness. CRA introduces a dual-augmentation mechanism that includes context augmentation, which dynamically retrieves analogous unlabeled molecules and captures their task-specific contextual knowledge to enhance the anchors, and anchor augmentation, which leverages the anchors to augment the molecular representations. We evaluate our approach on the MoleculeNet and FS-Mol benchmarks, as well as in domain transfer experiments. The results demonstrate that CRA outperforms the state-of-the-art by 2.60% and 3.28% in AUC and $\Delta$AUC-PR metrics, respectively, and exhibits superior generalization capabilities.
Abstract:With growing demands for data privacy and model robustness, graph unlearning (GU), which erases the influence of specific data on trained GNN models, has gained significant attention. However, existing exact unlearning methods suffer from either low efficiency or poor model performance. While being more utility-preserving and efficient, current approximate unlearning methods are not applicable in the zero-glance privacy setting, where the deleted samples cannot be accessed during unlearning due to immediate deletion requested by regulations. Besides, these approximate methods, which try to directly perturb model parameters still involve high privacy concerns in practice. To fill the gap, we propose Transferable Condensation Graph Unlearning (TCGU), a data-centric solution to zero-glance graph unlearning. Specifically, we first design a two-level alignment strategy to pre-condense the original graph into a small yet utility-preserving dataset. Upon receiving an unlearning request, we fine-tune the pre-condensed data with a low-rank plugin, to directly align its distribution with the remaining graph, thus efficiently revoking the information of deleted data without accessing them. A novel similarity distribution matching approach and a discrimination regularizer are proposed to effectively transfer condensed data and preserve its utility in GNN training, respectively. Finally, we retrain the GNN on the transferred condensed data. Extensive experiments on 6 benchmark datasets demonstrate that TCGU can achieve superior performance in terms of model utility, unlearning efficiency, and unlearning efficacy than existing GU methods.
Abstract:Unsupervised Outlier Detection (UOD) is an important data mining task. With the advance of deep learning, deep Outlier Detection (OD) has received broad interest. Most deep UOD models are trained exclusively on clean datasets to learn the distribution of the normal data, which requires huge manual efforts to clean the real-world data if possible. Instead of relying on clean datasets, some approaches directly train and detect on unlabeled contaminated datasets, leading to the need for methods that are robust to such conditions. Ensemble methods emerged as a superior solution to enhance model robustness against contaminated training sets. However, the training time is greatly increased by the ensemble. In this study, we investigate the impact of outliers on the training phase, aiming to halt training on unlabeled contaminated datasets before performance degradation. Initially, we noted that blending normal and anomalous data causes AUC fluctuations, a label-dependent measure of detection accuracy. To circumvent the need for labels, we propose a zero-label entropy metric named Loss Entropy for loss distribution, enabling us to infer optimal stopping points for training without labels. Meanwhile, we theoretically demonstrate negative correlation between entropy metric and the label-based AUC. Based on this, we develop an automated early-stopping algorithm, EntropyStop, which halts training when loss entropy suggests the maximum model detection capability. We conduct extensive experiments on ADBench (including 47 real datasets), and the overall results indicate that AutoEncoder (AE) enhanced by our approach not only achieves better performance than ensemble AEs but also requires under 1\% of training time. Lastly, our proposed metric and early-stopping approach are evaluated on other deep OD models, exhibiting their broad potential applicability.
Abstract:Self-supervised learning (SSL) provides a promising alternative for representation learning on hypergraphs without costly labels. However, existing hypergraph SSL models are mostly based on contrastive methods with the instance-level discrimination strategy, suffering from two significant limitations: (1) They select negative samples arbitrarily, which is unreliable in deciding similar and dissimilar pairs, causing training bias. (2) They often require a large number of negative samples, resulting in expensive computational costs. To address the above issues, we propose SE-HSSL, a hypergraph SSL framework with three sampling-efficient self-supervised signals. Specifically, we introduce two sampling-free objectives leveraging the canonical correlation analysis as the node-level and group-level self-supervised signals. Additionally, we develop a novel hierarchical membership-level contrast objective motivated by the cascading overlap relationship in hypergraphs, which can further reduce membership sampling bias and improve the efficiency of sample utilization. Through comprehensive experiments on 7 real-world hypergraphs, we demonstrate the superiority of our approach over the state-of-the-art method in terms of both effectiveness and efficiency.
Abstract:Being the most cutting-edge generative methods, diffusion methods have shown great advances in wide generation tasks. Among them, graph generation attracts significant research attention for its broad application in real life. In our survey, we systematically and comprehensively review on diffusion-based graph generative methods. We first make a review on three mainstream paradigms of diffusion methods, which are denoising diffusion probabilistic models, score-based genrative models, and stochastic differential equations. Then we further categorize and introduce the latest applications of diffusion models on graphs. In the end, we point out some limitations of current studies and future directions of future explorations. The summary of existing methods metioned in this survey is in https://github.com/zhejiangzhuque/Diffusion-based-Graph-Generative-Methods.
Abstract:Outlier detection (OD) has received continuous research interests due to its wide applications. With the development of deep learning, increasingly deep OD algorithms are proposed. Despite the availability of numerous deep OD models, existing research has reported that the performance of deep models is extremely sensitive to the configuration of hyperparameters (HPs). However, the selection of HPs for deep OD models remains a notoriously difficult task due to the lack of any labels and long list of HPs. In our study. we shed light on an essential factor, training time, that can introduce significant variation in the performance of deep model. Even the performance is stable across other HPs, training time itself can cause a serious HP sensitivity issue. Motivated by this finding, we are dedicated to formulating a strategy to terminate model training at the optimal iteration. Specifically, we propose a novel metric called loss entropy to internally evaluate the model performance during training while an automated training stopping algorithm is devised. To our knowledge, our approach is the first to enable reliable identification of the optimal training iteration during training without requiring any labels. Our experiments on tabular, image datasets show that our approach can be applied to diverse deep models and datasets. It not only enhances the robustness of deep models to their HPs, but also improves the performance and reduces plenty of training time compared to naive training.
Abstract:A large number of studies on Graph Outlier Detection (GOD) have emerged in recent years due to its wide applications, in which Unsupervised Node Outlier Detection (UNOD) on attributed networks is an important area. UNOD focuses on detecting two kinds of typical outliers in graphs: the structural outlier and the contextual outlier. Most existing works conduct the experiments based on the datasets with injected outliers. However, we find that the most widely-used outlier injection approach has a serious data leakage issue. By only utilizing such data leakage, a simple approach can achieve the state-of-the-art performance in detecting outliers. In addition, we observe that most existing algorithms have performance drops with varied injection settings. The other major issue is on balanced detection performance between the two types of outliers, which has not been considered by existing studies. In this paper, we analyze the cause of the data leakage issue in depth since the injection approach is a building block to advance UNOD. Moreover, we devise a novel variance-based model to detect structural outliers, which is more robust to different injection settings. On top of this, we propose a new framework, Variance-based Graph Outlier Detection (VGOD), which combines our variance-based model and attribute reconstruction model to detect outliers in a balanced way. Finally, we conduct extensive experiments to demonstrate the effectiveness and the efficiency of VGOD. The results on 5 real-world datasets validate that VGOD achieves not only the best performance in detecting outliers but also a balanced detection performance between structural and contextual outliers.
Abstract:Network alignment task, which aims to identify corresponding nodes in different networks, is of great significance for many subsequent applications. Without the need for labeled anchor links, unsupervised alignment methods have been attracting more and more attention. However, the topological consistency assumptions defined by existing methods are generally low-order and less accurate because only the edge-indiscriminative topological pattern is considered, which is especially risky in an unsupervised setting. To reposition the focus of the alignment process from low-order to higher-order topological consistency, in this paper, we propose a fully unsupervised network alignment framework named HTC. The proposed higher-order topological consistency is formulated based on edge orbits, which is merged into the information aggregation process of a graph convolutional network so that the alignment consistencies are transformed into the similarity of node embeddings. Furthermore, the encoder is trained to be multi-orbit-aware and then be refined to identify more trusted anchor links. Node correspondence is comprehensively evaluated by integrating all different orders of consistency. {In addition to sound theoretical analysis, the superiority of the proposed method is also empirically demonstrated through extensive experimental evaluation. On three pairs of real-world datasets and two pairs of synthetic datasets, our HTC consistently outperforms a wide variety of unsupervised and supervised methods with the least or comparable time consumption. It also exhibits robustness to structural noise as a result of our multi-orbit-aware training mechanism.
Abstract:Subgraph matching is a fundamental problem in various fields that use graph structured data. Subgraph matching algorithms enumerate all isomorphic embeddings of a query graph q in a data graph G. An important branch of matching algorithms exploit the backtracking search approach which recursively extends intermediate results following a matching order of query vertices. It has been shown that the matching order plays a critical role in time efficiency of these backtracking based subgraph matching algorithms. In recent years, many advanced techniques for query vertex ordering (i.e., matching order generation) have been proposed to reduce the unpromising intermediate results according to the preset heuristic rules. In this paper, for the first time we apply the Reinforcement Learning (RL) and Graph Neural Networks (GNNs) techniques to generate the high-quality matching order for subgraph matching algorithms. Instead of using the fixed heuristics to generate the matching order, our model could capture and make full use of the graph information, and thus determine the query vertex order with the adaptive learning-based rule that could significantly reduces the number of redundant enumerations. With the help of the reinforcement learning framework, our model is able to consider the long-term benefits rather than only consider the local information at current ordering step.Extensive experiments on six real-life data graphs demonstrate that our proposed matching order generation technique could reduce up to two orders of magnitude of query processing time compared to the state-of-the-art algorithms.
Abstract:With the development of traffic prediction technology, spatiotemporal prediction models have attracted more and more attention from academia communities and industry. However, most existing researches focus on reducing model's prediction error but ignore the error caused by the uneven distribution of spatial events within a region. In this paper, we study a region partitioning problem, namely optimal grid size selection problem (OGSS), which aims to minimize the real error of spatiotemporal prediction models by selecting the optimal grid size. In order to solve OGSS, we analyze the upper bound of real error of spatiotemporal prediction models and minimize the real error by minimizing its upper bound. Through in-depth analysis, we find that the upper bound of real error will decrease then increase when the number of model grids increase from 1 to the maximum allowed value. Then, we propose two algorithms, namely Ternary Search and Iterative Method, to automatically find the optimal grid size. Finally, the experiments verify that the error of prediction has the same trend as its upper bound, and the change trend of the upper bound of real error with respect to the increase of the number of model grids will decrease then increase. Meanwhile, in a case study, by selecting the optimal grid size, the order dispatching results of a state-of-the-art prediction-based algorithm can be improved up to 13.6%, which shows the effectiveness of our methods on tuning the region partition for spatiotemporal prediction models.