Abstract:Removing adverse weather conditions such as rain, raindrop, and snow from images is critical for various real-world applications, including autonomous driving, surveillance, and remote sensing. However, existing multi-task approaches typically rely on augmenting the model with additional parameters to handle multiple scenarios. While this enables the model to address diverse tasks, the introduction of extra parameters significantly complicates its practical deployment. In this paper, we propose a novel Gradient-Guided Parameter Mask for Multi-Scenario Image Restoration under adverse weather, designed to effectively handle image degradation under diverse weather conditions without additional parameters. Our method segments model parameters into common and specific components by evaluating the gradient variation intensity during training for each specific weather condition. This enables the model to precisely and adaptively learn relevant features for each weather scenario, improving both efficiency and effectiveness without compromising on performance. This method constructs specific masks based on gradient fluctuations to isolate parameters influenced by other tasks, ensuring that the model achieves strong performance across all scenarios without adding extra parameters. We demonstrate the state-of-the-art performance of our framework through extensive experiments on multiple benchmark datasets. Specifically, our method achieves PSNR scores of 29.22 on the Raindrop dataset, 30.76 on the Rain dataset, and 29.56 on the Snow100K dataset. Code is available at: \href{https://github.com/AierLab/MultiTask}{https://github.com/AierLab/MultiTask}.
Abstract:Modern autonomous vehicle perception systems often struggle with occlusions and limited perception range. Previous studies have demonstrated the effectiveness of cooperative perception in extending the perception range and overcoming occlusions, thereby improving the safety of autonomous driving. In recent years, a series of cooperative perception datasets have emerged. However, these datasets only focus on camera and LiDAR, overlooking 4D Radar, a sensor employed in single-vehicle autonomous driving for robust perception in adverse weather conditions. In this paper, to bridge the gap of missing 4D Radar datasets in cooperative perception, we present V2X-Radar, the first large real-world multi-modal dataset featuring 4D Radar. Our V2X-Radar dataset is collected using a connected vehicle platform and an intelligent roadside unit equipped with 4D Radar, LiDAR, and multi-view cameras. The collected data includes sunny and rainy weather conditions, spanning daytime, dusk, and nighttime, as well as typical challenging scenarios. The dataset comprises 20K LiDAR frames, 40K camera images, and 20K 4D Radar data, with 350K annotated bounding boxes across five categories. To facilitate diverse research domains, we establish V2X-Radar-C for cooperative perception, V2X-Radar-I for roadside perception, and V2X-Radar-V for single-vehicle perception. We further provide comprehensive benchmarks of recent perception algorithms on the above three sub-datasets. The dataset and benchmark codebase will be available at \url{http://openmpd.com/column/V2X-Radar}.
Abstract:Classical neural ordinary differential equations (ODEs) are powerful tools for approximating the log-density functions in high-dimensional spaces along trajectories, where neural networks parameterize the velocity fields. This paper proposes a system of neural differential equations representing first- and second-order score functions along trajectories based on deep neural networks. We reformulate the mean field control (MFC) problem with individual noises into an unconstrained optimization problem framed by the proposed neural ODE system. Additionally, we introduce a novel regularization term to enforce characteristics of viscous Hamilton--Jacobi--Bellman (HJB) equations to be satisfied based on the evolution of the second-order score function. Examples include regularized Wasserstein proximal operators (RWPOs), probability flow matching of Fokker--Planck (FP) equations, and linear quadratic (LQ) MFC problems, which demonstrate the effectiveness and accuracy of the proposed method.
Abstract:The ability of learning useful features is one of the major advantages of neural networks. Although recent works show that neural network can operate in a neural tangent kernel (NTK) regime that does not allow feature learning, many works also demonstrate the potential for neural networks to go beyond NTK regime and perform feature learning. Recently, a line of work highlighted the feature learning capabilities of the early stages of gradient-based training. In this paper we consider another mechanism for feature learning via gradient descent through a local convergence analysis. We show that once the loss is below a certain threshold, gradient descent with a carefully regularized objective will capture ground-truth directions. Our results demonstrate that feature learning not only happens at the initial gradient steps, but can also occur towards the end of training.
Abstract:With a strong alignment between the training and test distributions, object relation as a context prior facilitates object detection. Yet, it turns into a harmful but inevitable training set bias upon test distributions that shift differently across space and time. Nevertheless, the existing detectors cannot incorporate deployment context prior during the test phase without parameter update. Such kind of capability requires the model to explicitly learn disentangled representations with respect to context prior. To achieve this, we introduce an additional graph input to the detector, where the graph represents the deployment context prior, and its edge values represent object relations. Then, the detector behavior is trained to bound to the graph with a modified training objective. As a result, during the test phase, any suitable deployment context prior can be injected into the detector via graph edits, hence calibrating, or "re-biasing" the detector towards the given prior at run-time without parameter update. Even if the deployment prior is unknown, the detector can self-calibrate using deployment prior approximated using its own predictions. Comprehensive experimental results on the COCO dataset, as well as cross-dataset testing on the Objects365 dataset, demonstrate the effectiveness of the run-time calibratable detector.
Abstract:Adversarial robustness often comes at the cost of degraded accuracy, impeding the real-life application of robust classification models. Training-based solutions for better trade-offs are limited by incompatibilities with already-trained high-performance large models, necessitating the exploration of training-free ensemble approaches. Observing that robust models are more confident in correct predictions than in incorrect ones on clean and adversarial data alike, we speculate amplifying this "benign confidence property" can reconcile accuracy and robustness in an ensemble setting. To achieve so, we propose "MixedNUTS", a training-free method where the output logits of a robust classifier and a standard non-robust classifier are processed by nonlinear transformations with only three parameters, which are optimized through an efficient algorithm. MixedNUTS then converts the transformed logits into probabilities and mixes them as the overall output. On CIFAR-10, CIFAR-100, and ImageNet datasets, experimental results with custom strong adaptive attacks demonstrate MixedNUTS's vastly improved accuracy and near-SOTA robustness -- it boosts CIFAR-100 clean accuracy by 7.86 points, sacrificing merely 0.87 points in robust accuracy.
Abstract:Recent advances in deep generative models have led to the development of methods capable of synthesizing high-quality, realistic images. These models pose threats to society due to their potential misuse. Prior research attempted to mitigate these threats by detecting generated images, but the varying traces left by different generative models make it challenging to create a universal detector capable of generalizing to new, unseen generative models. In this paper, we propose to inject a universal adversarial signature into an arbitrary pre-trained generative model, in order to make its generated contents more detectable and traceable. First, the imperceptible optimal signature for each image can be found by a signature injector through adversarial training. Subsequently, the signature can be incorporated into an arbitrary generator by fine-tuning it with the images processed by the signature injector. In this way, the detector corresponding to the signature can be reused for any fine-tuned generator for tracking the generator identity. The proposed method is validated on the FFHQ and ImageNet datasets with various state-of-the-art generative models, consistently showing a promising detection rate. Code will be made publicly available at \url{https://github.com/zengxianyu/genwm}.
Abstract:Diffusion Probabilistic Field (DPF) models the distribution of continuous functions defined over metric spaces. While DPF shows great potential for unifying data generation of various modalities including images, videos, and 3D geometry, it does not scale to a higher data resolution. This can be attributed to the ``scaling property'', where it is difficult for the model to capture local structures through uniform sampling. To this end, we propose a new model comprising of a view-wise sampling algorithm to focus on local structure learning, and incorporating additional guidance, e.g., text description, to complement the global geometry. The model can be scaled to generate high-resolution data while unifying multiple modalities. Experimental results on data generation in various modalities demonstrate the effectiveness of our model, as well as its potential as a foundation framework for scalable modality-unified visual content generation.
Abstract:Depth separation -- why a deeper network is more powerful than a shallower one -- has been a major problem in deep learning theory. Previous results often focus on representation power. For example, arXiv:1904.06984 constructed a function that is easy to approximate using a 3-layer network but not approximable by any 2-layer network. In this paper, we show that this separation is in fact algorithmic: one can learn the function constructed by arXiv:1904.06984 using an overparameterized network with polynomially many neurons efficiently. Our result relies on a new way of extending the mean-field limit to multilayer networks, and a decomposition of loss that factors out the error introduced by the discretization of infinite-width mean-field networks.
Abstract:In this work, we consider the stochastic optimal control problem in continuous time and a policy gradient method to solve it. In particular, we study the gradient flow for the control, viewed as a continuous time limit of the policy gradient. We prove the global convergence of the gradient flow and establish a convergence rate under some regularity assumptions. The main novelty in the analysis is the notion of local optimal control function, which is introduced to compare the local optimality of the iterate.