Abstract:Vision language models can now generate long-form answers to questions about images - long-form visual question answers (LFVQA). We contribute VizWiz-LF, a dataset of long-form answers to visual questions posed by blind and low vision (BLV) users. VizWiz-LF contains 4.2k long-form answers to 600 visual questions, collected from human expert describers and six VQA models. We develop and annotate functional roles of sentences of LFVQA and demonstrate that long-form answers contain information beyond the question answer such as explanations and suggestions. We further conduct automatic and human evaluations with BLV and sighted people to evaluate long-form answers. BLV people perceive both human-written and generated long-form answers to be plausible, but generated answers often hallucinate incorrect visual details, especially for unanswerable visual questions (e.g., blurry or irrelevant images). To reduce hallucinations, we evaluate the ability of VQA models to abstain from answering unanswerable questions across multiple prompting strategies.
Abstract:Individuals who are blind or have low vision (BLV) are at a heightened risk of sharing private information if they share photographs they have taken. To facilitate developing technologies that can help preserve privacy, we introduce BIV-Priv-Seg, the first localization dataset originating from people with visual impairments that shows private content. It contains 1,028 images with segmentation annotations for 16 private object categories. We first characterize BIV-Priv-Seg and then evaluate modern models' performance for locating private content in the dataset. We find modern models struggle most with locating private objects that are not salient, small, and lack text as well as recognizing when private content is absent from an image. We facilitate future extensions by sharing our new dataset with the evaluation server at https://vizwiz.org/tasks-and-datasets/object-localization.
Abstract:Hierarchical segmentation entails creating segmentations at varying levels of granularity. We introduce the first hierarchical semantic segmentation dataset with subpart annotations for natural images, which we call SPIN (SubPartImageNet). We also introduce two novel evaluation metrics to evaluate how well algorithms capture spatial and semantic relationships across hierarchical levels. We benchmark modern models across three different tasks and analyze their strengths and weaknesses across objects, parts, and subparts. To facilitate community-wide progress, we publicly release our dataset at https://joshmyersdean.github.io/spin/index.html.
Abstract:We propose a hybrid framework for consistently producing high-quality object tracks by combining an automated object tracker with little human input. The key idea is to tailor a module for each dataset to intelligently decide when an object tracker is failing and so humans should be brought in to re-localize an object for continued tracking. Our approach leverages self-supervised learning on unlabeled videos to learn a tailored representation for a target object that is then used to actively monitor its tracked region and decide when the tracker fails. Since labeled data is not needed, our approach can be applied to novel object categories. Experiments on three datasets demonstrate our method outperforms existing approaches, especially for small, fast moving, or occluded objects.
Abstract:Lateral flow tests (LFTs) enable rapid, low-cost testing for health conditions including Covid, pregnancy, HIV, and malaria. Automated readers of LFT results can yield many benefits including empowering blind people to independently learn about their health and accelerating data entry for large-scale monitoring (e.g., for pandemics such as Covid) by using only a single photograph per LFT test. Accordingly, we explore the abilities of modern foundation vision language models (VLMs) in interpreting such tests. To enable this analysis, we first create a new labeled dataset with hierarchical segmentations of each LFT test and its nested test result window. We call this dataset LFT-Grounding. Next, we benchmark eight modern VLMs in zero-shot settings for analyzing these images. We demonstrate that current VLMs frequently fail to correctly identify the type of LFT test, interpret the test results, locate the nested result window of the LFT tests, and recognize LFT tests when they partially obfuscated. To facilitate community-wide progress towards automated LFT reading, we publicly release our dataset at https://iamstuti.github.io/lft_grounding_foundation_models/.
Abstract:Visual Question Answering (VQA) entails answering questions about images. We introduce the first VQA dataset in which all contents originate from an authentic use case. Sourced from online question answering community forums, we call it VQAonline. We then characterize our dataset and how it relates to eight other VQA datasets. Observing that answers in our dataset tend to be much longer (e.g., with a mean of 173 words) and thus incompatible with standard VQA evaluation metrics, we next analyze which of the six popular metrics for longer text evaluation align best with human judgments. We then use the best-suited metrics to evaluate six state-of-the-art vision and language foundation models on VQAonline and reveal where they struggle most. We will release the dataset soon to facilitate future extensions.
Abstract:Visual question answering is a task of predicting the answer to a question about an image. Given that different people can provide different answers to a visual question, we aim to better understand why with answer groundings. We introduce the first dataset that visually grounds each unique answer to each visual question, which we call VQAAnswerTherapy. We then propose two novel problems of predicting whether a visual question has a single answer grounding and localizing all answer groundings. We benchmark modern algorithms for these novel problems to show where they succeed and struggle. The dataset and evaluation server can be found publicly at https://vizwiz.org/tasks-and-datasets/vqa-answer-therapy/.
Abstract:Interactive segmentation entails a human marking an image to guide how a model either creates or edits a segmentation. Our work addresses limitations of existing methods: they either only support one gesture type for marking an image (e.g., either clicks or scribbles) or require knowledge of the gesture type being employed, and require specifying whether marked regions should be included versus excluded in the final segmentation. We instead propose a simplified interactive segmentation task where a user only must mark an image, where the input can be of any gesture type without specifying the gesture type. We support this new task by introducing the first interactive segmentation dataset with multiple gesture types as well as a new evaluation metric capable of holistically evaluating interactive segmentation algorithms. We then analyze numerous interactive segmentation algorithms, including ones adapted for our novel task. While we observe promising performance overall, we also highlight areas for future improvement. To facilitate further extensions of this work, we publicly share our new dataset at https://github.com/joshmyersdean/dig.
Abstract:Perception-based image analysis technologies can be used to help visually impaired people take better quality pictures by providing automated guidance, thereby empowering them to interact more confidently on social media. The photographs taken by visually impaired users often suffer from one or both of two kinds of quality issues: technical quality (distortions), and semantic quality, such as framing and aesthetic composition. Here we develop tools to help them minimize occurrences of common technical distortions, such as blur, poor exposure, and noise. We do not address the complementary problems of semantic quality, leaving that aspect for future work. The problem of assessing and providing actionable feedback on the technical quality of pictures captured by visually impaired users is hard enough, owing to the severe, commingled distortions that often occur. To advance progress on the problem of analyzing and measuring the technical quality of visually impaired user-generated content (VI-UGC), we built a very large and unique subjective image quality and distortion dataset. This new perceptual resource, which we call the LIVE-Meta VI-UGC Database, contains $40$K real-world distorted VI-UGC images and $40$K patches, on which we recorded $2.7$M human perceptual quality judgments and $2.7$M distortion labels. Using this psychometric resource we also created an automatic blind picture quality and distortion predictor that learns local-to-global spatial quality relationships, achieving state-of-the-art prediction performance on VI-UGC pictures, significantly outperforming existing picture quality models on this unique class of distorted picture data. We also created a prototype feedback system that helps to guide users to mitigate quality issues and take better quality pictures, by creating a multi-task learning framework.
Abstract:Salient object detection is the task of producing a binary mask for an image that deciphers which pixels belong to the foreground object versus background. We introduce a new salient object detection dataset using images taken by people who are visually impaired who were seeking to better understand their surroundings, which we call VizWiz-SalientObject. Compared to seven existing datasets, VizWiz-SalientObject is the largest (i.e., 32,000 human-annotated images) and contains unique characteristics including a higher prevalence of text in the salient objects (i.e., in 68\% of images) and salient objects that occupy a larger ratio of the images (i.e., on average, $\sim$50\% coverage). We benchmarked seven modern salient object detection methods on our dataset and found they struggle most with images featuring salient objects that are large, have less complex boundaries, and lack text as well as for lower quality images. We invite the broader community to work on our new dataset challenge by publicly sharing the dataset at https://vizwiz.org/tasks-and-datasets/salient-object .