Stephen
Abstract:Large multimodal language models (MLLMs) such as GPT-4V and GPT-4o have achieved remarkable advancements in understanding and generating multimodal content, showcasing superior quality and capabilities across diverse tasks. However, their deployment faces significant challenges, including slow inference, high computational cost, and impracticality for on-device applications. In contrast, the emergence of small MLLMs, exemplified by the LLava-series models and Phi-3-Vision, offers promising alternatives with faster inference, reduced deployment costs, and the ability to handle domain-specific scenarios. Despite their growing presence, the capability boundaries between large and small MLLMs remain underexplored. In this work, we conduct a systematic and comprehensive evaluation to benchmark both small and large MLLMs, spanning general capabilities such as object recognition, temporal reasoning, and multimodal comprehension, as well as real-world applications in domains like industry and automotive. Our evaluation reveals that small MLLMs can achieve comparable performance to large models in specific scenarios but lag significantly in complex tasks requiring deeper reasoning or nuanced understanding. Furthermore, we identify common failure cases in both small and large MLLMs, highlighting domains where even state-of-the-art models struggle. We hope our findings will guide the research community in pushing the quality boundaries of MLLMs, advancing their usability and effectiveness across diverse applications.
Abstract:Through the integration of external tools, large language models (LLMs) such as GPT-4o and Llama 3.1 significantly expand their functional capabilities, evolving from elementary conversational agents to general-purpose assistants. We argue that the primary drivers of these advancements are the quality and diversity of the training data. However, the existing LLMs with external tool integration provide only limited transparency regarding their datasets and data collection methods, which has led to the initiation of this research. Specifically, in this paper, our objective is to elucidate the detailed process involved in constructing datasets that empower LLMs to effectively learn how to utilize external tools and make this information available to the public through the introduction of ToolBridge. ToolBridge proposes to employ a collection of general open-access datasets as its raw dataset pool and applies a series of strategies to identify appropriate data entries from the pool for external tool API insertions. By supervised fine-tuning on these curated data entries, LLMs can invoke external tools in appropriate contexts to boost their predictive accuracy, particularly for basic functions including data processing, numerical computation, and factual retrieval. Our experiments rigorously isolates model architectures and training configurations, focusing exclusively on the role of data. The experimental results indicate that LLMs trained on ToolBridge demonstrate consistent performance improvements on both standard benchmarks and custom evaluation datasets. All the associated code and data will be open-source at https://github.com/CharlesPikachu/ToolBridge, promoting transparency and facilitating the broader community to explore approaches for equipping LLMs with external tools capabilities.
Abstract:With the release of GPT-4V(O), its use in generating pseudo labels for multi-modality tasks has gained significant popularity. However, it is still a secret how to build such advanced models from its base large language models (LLMs). This work explores the potential of using LLMs alone for data generation and develop competitive multi-modality models focusing on chart understanding. We construct a large-scale chart dataset, SynChart, which contains approximately 4 million diverse chart images with over 75 million dense annotations, including data tables, code, descriptions, and question-answer sets. We trained a 4.2B chart-expert model using this dataset and achieve near-GPT-4O performance on the ChartQA task, surpassing GPT-4V.
Abstract:Recent studies customizing Multimodal Large Language Models (MLLMs) for domain-specific tasks have yielded promising results, especially in the field of scientific chart comprehension. These studies generally utilize visual instruction tuning with specialized datasets to enhance question and answer (QA) accuracy within the chart domain. However, they often neglect the fundamental discrepancy between natural image-caption pre-training data and digital chart image-QA data, particularly in the models' capacity to extract underlying numeric values from charts. This paper tackles this oversight by exploring the training processes necessary to improve MLLMs' comprehension of charts. We present three key findings: (1) Incorporating raw data values in alignment pre-training markedly improves comprehension of chart data. (2) Replacing images with their textual representation randomly during end-to-end fine-tuning transfer the language reasoning capability to chart interpretation skills. (3) Requiring the model to first extract the underlying chart data and then answer the question in the fine-tuning can further improve the accuracy. Consequently, we introduce CHOPINLLM, an MLLM tailored for in-depth chart comprehension. CHOPINLLM effectively interprets various types of charts, including unannotated ones, while maintaining robust reasoning abilities. Furthermore, we establish a new benchmark to evaluate MLLMs' understanding of different chart types across various comprehension levels. Experimental results show that CHOPINLLM exhibits strong performance in understanding both annotated and unannotated charts across a wide range of types.
Abstract:Image segmentation is one of the most fundamental problems in computer vision and has drawn a lot of attentions due to its vast applications in image understanding and autonomous driving. However, designing effective and efficient segmentation neural architectures is a labor-intensive process that may require lots of trials by human experts. In this paper, we address the challenge of integrating multi-head self-attention into high resolution representation CNNs efficiently, by leveraging architecture search. Manually replacing convolution layers with multi-head self-attention is non-trivial due to the costly overhead in memory to maintain high resolution. By contrast, we develop a multi-target multi-branch supernet method, which not only fully utilizes the advantages of high-resolution features, but also finds the proper location for placing multi-head self-attention module. Our search algorithm is optimized towards multiple objective s (e.g., latency and mIoU) and capable of finding architectures on Pareto frontier with arbitrary number of branches in a single search. We further present a series of model via Hybrid Convolutional-Transformer Architecture Search (HyCTAS) method that searched for the best hybrid combination of light-weight convolution layers and memory-efficient self-attention layers between branches from different resolutions and fuse to high resolution for both efficiency and effectiveness. Extensive experiments demonstrate that HyCTAS outperforms previous methods on semantic segmentation task. Code and models are available at \url{https://github.com/MarvinYu1995/HyCTAS}.
Abstract:A comprehensive evaluation is critical to assess the capabilities of large multimodal models (LMM). In this study, we evaluate the state-of-the-art LMMs, namely GPT-4V and Gemini, utilizing the VQAonline dataset. VQAonline is an end-to-end authentic VQA dataset sourced from a diverse range of everyday users. Compared previous benchmarks, VQAonline well aligns with real-world tasks. It enables us to effectively evaluate the generality of an LMM, and facilitates a direct comparison with human performance. To comprehensively evaluate GPT-4V and Gemini, we generate seven types of metadata for around 2,000 visual questions, such as image type and the required image processing capabilities. Leveraging this array of metadata, we analyze the zero-shot performance of GPT-4V and Gemini, and identify the most challenging questions for both models.
Abstract:Visual Question Answering (VQA) entails answering questions about images. We introduce the first VQA dataset in which all contents originate from an authentic use case. Sourced from online question answering community forums, we call it VQAonline. We then characterize our dataset and how it relates to eight other VQA datasets. Observing that answers in our dataset tend to be much longer (e.g., with a mean of 173 words) and thus incompatible with standard VQA evaluation metrics, we next analyze which of the six popular metrics for longer text evaluation align best with human judgments. We then use the best-suited metrics to evaluate six state-of-the-art vision and language foundation models on VQAonline and reveal where they struggle most. We will release the dataset soon to facilitate future extensions.
Abstract:In this paper, we introduce an intriguing phenomenon-the successful reconstruction of images using a set of one-way wave equations with hidden and learnable speeds. Each individual image corresponds to a solution with a unique initial condition, which can be computed from the original image using a visual encoder (e.g., a convolutional neural network). Furthermore, the solution for each image exhibits two noteworthy mathematical properties: (a) it can be decomposed into a collection of special solutions of the same one-way wave equations that are first-order autoregressive, with shared coefficient matrices for autoregression, and (b) the product of these coefficient matrices forms a diagonal matrix with the speeds of the wave equations as its diagonal elements. We term this phenomenon hidden waves, as it reveals that, although the speeds of the set of wave equations and autoregressive coefficient matrices are latent, they are both learnable and shared across images. This represents a mathematical invariance across images, providing a new mathematical perspective to understand images.
Abstract:Long-tailed object detection (LTOD) aims to handle the extreme data imbalance in real-world datasets, where many tail classes have scarce instances. One popular strategy is to explore extra data with image-level labels, yet it produces limited results due to (1) semantic ambiguity -- an image-level label only captures a salient part of the image, ignoring the remaining rich semantics within the image; and (2) location sensitivity -- the label highly depends on the locations and crops of the original image, which may change after data transformations like random cropping. To remedy this, we propose RichSem, a simple but effective method, which is robust to learn rich semantics from coarse locations without the need of accurate bounding boxes. RichSem leverages rich semantics from images, which are then served as additional soft supervision for training detectors. Specifically, we add a semantic branch to our detector to learn these soft semantics and enhance feature representations for long-tailed object detection. The semantic branch is only used for training and is removed during inference. RichSem achieves consistent improvements on both overall and rare-category of LVIS under different backbones and detectors. Our method achieves state-of-the-art performance without requiring complex training and testing procedures. Moreover, we show the effectiveness of our method on other long-tailed datasets with additional experiments. Code is available at \url{https://github.com/MengLcool/RichSem}.
Abstract:Recent studies have indicated that foundation models, such as BERT and GPT, excel in adapting to a variety of downstream tasks. This adaptability has established them as the dominant force in building artificial intelligence (AI) systems. As visualization techniques intersect with these models, a new research paradigm emerges. This paper divides these intersections into two main areas: visualizations for foundation models (VIS4FM) and foundation models for visualizations (FM4VIS). In VIS4FM, we explore the primary role of visualizations in understanding, refining, and evaluating these intricate models. This addresses the pressing need for transparency, explainability, fairness, and robustness. Conversely, within FM4VIS, we highlight how foundation models can be utilized to advance the visualization field itself. The confluence of foundation models and visualizations holds great promise, but it also comes with its own set of challenges. By highlighting these challenges and the growing opportunities, this paper seeks to provide a starting point for continued exploration in this promising avenue.