Abstract:Through the integration of external tools, large language models (LLMs) such as GPT-4o and Llama 3.1 significantly expand their functional capabilities, evolving from elementary conversational agents to general-purpose assistants. We argue that the primary drivers of these advancements are the quality and diversity of the training data. However, the existing LLMs with external tool integration provide only limited transparency regarding their datasets and data collection methods, which has led to the initiation of this research. Specifically, in this paper, our objective is to elucidate the detailed process involved in constructing datasets that empower LLMs to effectively learn how to utilize external tools and make this information available to the public through the introduction of ToolBridge. ToolBridge proposes to employ a collection of general open-access datasets as its raw dataset pool and applies a series of strategies to identify appropriate data entries from the pool for external tool API insertions. By supervised fine-tuning on these curated data entries, LLMs can invoke external tools in appropriate contexts to boost their predictive accuracy, particularly for basic functions including data processing, numerical computation, and factual retrieval. Our experiments rigorously isolates model architectures and training configurations, focusing exclusively on the role of data. The experimental results indicate that LLMs trained on ToolBridge demonstrate consistent performance improvements on both standard benchmarks and custom evaluation datasets. All the associated code and data will be open-source at https://github.com/CharlesPikachu/ToolBridge, promoting transparency and facilitating the broader community to explore approaches for equipping LLMs with external tools capabilities.
Abstract:With the advancement of face manipulation technology, forgery images in multi-face scenarios are gradually becoming a more complex and realistic challenge. Despite this, detection and localization methods for such multi-face manipulations remain underdeveloped. Traditional manipulation localization methods either indirectly derive detection results from localization masks, resulting in limited detection performance, or employ a naive two-branch structure to simultaneously obtain detection and localization results, which cannot effectively benefit the localization capability due to limited interaction between two tasks. This paper proposes a new framework, namely MoNFAP, specifically tailored for multi-face manipulation detection and localization. The MoNFAP primarily introduces two novel modules: the Forgery-aware Unified Predictor (FUP) Module and the Mixture-of-Noises Module (MNM). The FUP integrates detection and localization tasks using a token learning strategy and multiple forgery-aware transformers, which facilitates the use of classification information to enhance localization capability. Besides, motivated by the crucial role of noise information in forgery detection, the MNM leverages multiple noise extractors based on the concept of the mixture of experts to enhance the general RGB features, further boosting the performance of our framework. Finally, we establish a comprehensive benchmark for multi-face detection and localization and the proposed \textit{MoNFAP} achieves significant performance. The codes will be made available.
Abstract:The limited availability of 3D medical image datasets, due to privacy concerns and high collection or annotation costs, poses significant challenges in the field of medical imaging. While a promising alternative is the use of synthesized medical data, there are few solutions for realistic 3D medical image synthesis due to difficulties in backbone design and fewer 3D training samples compared to 2D counterparts. In this paper, we propose GEM-3D, a novel generative approach to the synthesis of 3D medical images and the enhancement of existing datasets using conditional diffusion models. Our method begins with a 2D slice, noted as the informed slice to serve the patient prior, and propagates the generation process using a 3D segmentation mask. By decomposing the 3D medical images into masks and patient prior information, GEM-3D offers a flexible yet effective solution for generating versatile 3D images from existing datasets. GEM-3D can enable dataset enhancement by combining informed slice selection and generation at random positions, along with editable mask volumes to introduce large variations in diffusion sampling. Moreover, as the informed slice contains patient-wise information, GEM-3D can also facilitate counterfactual image synthesis and dataset-level de-enhancement with desired control. Experiments on brain MRI and abdomen CT images demonstrate that GEM-3D is capable of synthesizing high-quality 3D medical images with volumetric consistency, offering a straightforward solution for dataset enhancement during inference. The code is available at https://github.com/HKU-MedAI/GEM-3D.
Abstract:Surgical 3D reconstruction is a critical area of research in robotic surgery, with recent works adopting variants of dynamic radiance fields to achieve success in 3D reconstruction of deformable tissues from single-viewpoint videos. However, these methods often suffer from time-consuming optimization or inferior quality, limiting their adoption in downstream tasks. Inspired by 3D Gaussian Splatting, a recent trending 3D representation, we present EndoGS, applying Gaussian Splatting for deformable endoscopic tissue reconstruction. Specifically, our approach incorporates deformation fields to handle dynamic scenes, depth-guided supervision to optimize 3D targets with a single viewpoint, and a spatial-temporal weight mask to mitigate tool occlusion. As a result, EndoGS reconstructs and renders high-quality deformable endoscopic tissues from a single-viewpoint video, estimated depth maps, and labeled tool masks. Experiments on DaVinci robotic surgery videos demonstrate that EndoGS achieves superior rendering quality. Code is available at https://github.com/HKU-MedAI/EndoGS.
Abstract:Co-occurrent visual patterns suggest that pixel relation modeling facilitates dense prediction tasks, which inspires the development of numerous context modeling paradigms, \emph{e.g.}, multi-scale-driven and similarity-driven context schemes. Despite the impressive results, these existing paradigms often suffer from inadequate or ineffective contextual information aggregation due to reliance on large amounts of predetermined priors. To alleviate the issues, we propose a novel \textbf{I}ntervention-\textbf{D}riven \textbf{R}elation \textbf{Net}work (\textbf{IDRNet}), which leverages a deletion diagnostics procedure to guide the modeling of contextual relations among different pixels. Specifically, we first group pixel-level representations into semantic-level representations with the guidance of pseudo labels and further improve the distinguishability of the grouped representations with a feature enhancement module. Next, a deletion diagnostics procedure is conducted to model relations of these semantic-level representations via perceiving the network outputs and the extracted relations are utilized to guide the semantic-level representations to interact with each other. Finally, the interacted representations are utilized to augment original pixel-level representations for final predictions. Extensive experiments are conducted to validate the effectiveness of IDRNet quantitatively and qualitatively. Notably, our intervention-driven context scheme brings consistent performance improvements to state-of-the-art segmentation frameworks and achieves competitive results on popular benchmark datasets, including ADE20K, COCO-Stuff, PASCAL-Context, LIP, and Cityscapes. Code is available at \url{https://github.com/SegmentationBLWX/sssegmentation}.
Abstract:Listener head generation centers on generating non-verbal behaviors (e.g., smile) of a listener in reference to the information delivered by a speaker. A significant challenge when generating such responses is the non-deterministic nature of fine-grained facial expressions during a conversation, which varies depending on the emotions and attitudes of both the speaker and the listener. To tackle this problem, we propose the Emotional Listener Portrait (ELP), which treats each fine-grained facial motion as a composition of several discrete motion-codewords and explicitly models the probability distribution of the motions under different emotion in conversation. Benefiting from the ``explicit'' and ``discrete'' design, our ELP model can not only automatically generate natural and diverse responses toward a given speaker via sampling from the learned distribution but also generate controllable responses with a predetermined attitude. Under several quantitative metrics, our ELP exhibits significant improvements compared to previous methods.
Abstract:Cross-modality medical image synthesis is a critical topic and has the potential to facilitate numerous applications in the medical imaging field. Despite recent successes in deep-learning-based generative models, most current medical image synthesis methods rely on generative adversarial networks and suffer from notorious mode collapse and unstable training. Moreover, the 2D backbone-driven approaches would easily result in volumetric inconsistency, while 3D backbones are challenging and impractical due to the tremendous memory cost and training difficulty. In this paper, we introduce a new paradigm for volumetric medical data synthesis by leveraging 2D backbones and present a diffusion-based framework, Make-A-Volume, for cross-modality 3D medical image synthesis. To learn the cross-modality slice-wise mapping, we employ a latent diffusion model and learn a low-dimensional latent space, resulting in high computational efficiency. To enable the 3D image synthesis and mitigate volumetric inconsistency, we further insert a series of volumetric layers in the 2D slice-mapping model and fine-tune them with paired 3D data. This paradigm extends the 2D image diffusion model to a volumetric version with a slightly increasing number of parameters and computation, offering a principled solution for generic cross-modality 3D medical image synthesis. We showcase the effectiveness of our Make-A-Volume framework on an in-house SWI-MRA brain MRI dataset and a public T1-T2 brain MRI dataset. Experimental results demonstrate that our framework achieves superior synthesis results with volumetric consistency.
Abstract:This paper presents SSSegmenation, which is an open source supervised semantic image segmentation toolbox based on PyTorch. The design of this toolbox is motivated by MMSegmentation while it is easier to use because of fewer dependencies and achieves superior segmentation performance under a comparable training and testing setup. Moreover, the toolbox also provides plenty of trained weights for popular and contemporary semantic segmentation methods, including Deeplab, PSPNet, OCRNet, MaskFormer, \emph{etc}. We expect that this toolbox can contribute to the future development of semantic segmentation. Codes and model zoos are available at \href{https://github.com/SegmentationBLWX/sssegmentation/}{SSSegmenation}.
Abstract:As Deepfake contents continue to proliferate on the internet, advancing face manipulation forensics has become a pressing issue. To combat this emerging threat, previous methods mainly focus on studying how to distinguish authentic and manipulated face images. Despite impressive, image-level classification lacks explainability and is limited to some specific application scenarios. Existing forgery localization methods suffer from imprecise and inconsistent pixel-level annotations. To alleviate these problems, this paper first re-constructs the FaceForensics++ dataset by introducing pixel-level annotations, then builds an extensive benchmark for localizing tampered regions. Next, a novel Multi-Spectral Class Center Network (MSCCNet) is proposed for face manipulation detection and localization. Specifically, inspired by the power of frequency-related forgery traces, we design Multi-Spectral Class Center (MSCC) module to learn more generalizable and semantic-agnostic features. Based on the features of different frequency bands, the MSCC module collects multispectral class centers and computes pixel-to-class relations. Applying multi-spectral class-level representations suppresses the semantic information of the visual concepts, which is insensitive to manipulations. Furthermore, we propose a Multi-level Features Aggregation (MFA) module to employ more low-level forgery artifacts and structure textures. Experimental results quantitatively and qualitatively indicate the effectiveness and superiority of the proposed MSCCNet on comprehensive localization benchmarks. We expect this work to inspire more studies on pixel-level face manipulation localization. The annotations and code will be available.
Abstract:Co-occurrent visual pattern makes context aggregation become an essential paradigm for semantic segmentation.The existing studies focus on modeling the contexts within image while neglecting the valuable semantics of the corresponding category beyond image. To this end, we propose a novel soft mining contextual information beyond image paradigm named MCIBI++ to further boost the pixel-level representations. Specifically, we first set up a dynamically updated memory module to store the dataset-level distribution information of various categories and then leverage the information to yield the dataset-level category representations during network forward. After that, we generate a class probability distribution for each pixel representation and conduct the dataset-level context aggregation with the class probability distribution as weights. Finally, the original pixel representations are augmented with the aggregated dataset-level and the conventional image-level contextual information. Moreover, in the inference phase, we additionally design a coarse-to-fine iterative inference strategy to further boost the segmentation results. MCIBI++ can be effortlessly incorporated into the existing segmentation frameworks and bring consistent performance improvements. Also, MCIBI++ can be extended into the video semantic segmentation framework with considerable improvements over the baseline. Equipped with MCIBI++, we achieved the state-of-the-art performance on seven challenging image or video semantic segmentation benchmarks.