Stephen
Abstract:In recent research, adversarial attacks on person detectors using patches or static 3D model-based texture modifications have struggled with low success rates due to the flexible nature of human movement. Modeling the 3D deformations caused by various actions has been a major challenge. Fortunately, advancements in Neural Radiance Fields (NeRF) for dynamic human modeling offer new possibilities. In this paper, we introduce UV-Attack, a groundbreaking approach that achieves high success rates even with extensive and unseen human actions. We address the challenge above by leveraging dynamic-NeRF-based UV mapping. UV-Attack can generate human images across diverse actions and viewpoints, and even create novel actions by sampling from the SMPL parameter space. While dynamic NeRF models are capable of modeling human bodies, modifying clothing textures is challenging because they are embedded in neural network parameters. To tackle this, UV-Attack generates UV maps instead of RGB images and modifies the texture stacks. This approach enables real-time texture edits and makes the attack more practical. We also propose a novel Expectation over Pose Transformation loss (EoPT) to improve the evasion success rate on unseen poses and views. Our experiments show that UV-Attack achieves a 92.75% attack success rate against the FastRCNN model across varied poses in dynamic video settings, significantly outperforming the state-of-the-art AdvCamou attack, which only had a 28.50% ASR. Moreover, we achieve 49.5% ASR on the latest YOLOv8 detector in black-box settings. This work highlights the potential of dynamic NeRF-based UV mapping for creating more effective adversarial attacks on person detectors, addressing key challenges in modeling human movement and texture modification.
Abstract:As a novel way of presenting information, augmented reality (AR) enables people to interact with the physical world in a direct and intuitive way. While there are some mobile AR products implemented with specific hardware at a high cost, the software approaches of AR implementation on mobile platforms(such as smartphones, tablet PC, etc.) are still far from practical use. GPS-based mobile AR systems usually perform poorly due to the inaccurate positioning in the indoor environment. Previous vision-based pose estimation methods need to continuously track predefined markers within a short distance, which greatly degrade user experience. This paper first conducts a comprehensive study of the state-of-the-art AR and localization systems on mobile platforms. Then, we propose an effective indoor mobile AR framework. In the framework, a fusional localization method and a new pose estimation implementation are developed to increase the overall matching rate and thus improving AR display accuracy. Experiments show that our framework has higher performance than approaches purely based on images or Wi-Fi signals. We achieve low average error distances (0.61-0.81m) and accurate matching rates (77%-82%) when the average sampling grid length is set to 0.5m.
Abstract:Benefiting from large-scale pre-training of text-video pairs, current text-to-video (T2V) diffusion models can generate high-quality videos from the text description. Besides, given some reference images or videos, the parameter-efficient fine-tuning method, i.e. LoRA, can generate high-quality customized concepts, e.g., the specific subject or the motions from a reference video. However, combining the trained multiple concepts from different references into a single network shows obvious artifacts. To this end, we propose CustomTTT, where we can joint custom the appearance and the motion of the given video easily. In detail, we first analyze the prompt influence in the current video diffusion model and find the LoRAs are only needed for the specific layers for appearance and motion customization. Besides, since each LoRA is trained individually, we propose a novel test-time training technique to update parameters after combination utilizing the trained customized models. We conduct detailed experiments to verify the effectiveness of the proposed methods. Our method outperforms several state-of-the-art works in both qualitative and quantitative evaluations.
Abstract:Ensemble reasoning for the strengths of different LLM experts is critical to achieving consistent and satisfactory performance on diverse inputs across a wide range of tasks. However, existing LLM ensemble methods are either computationally intensive or incapable of leveraging complementary knowledge among LLM experts for various inputs. In this paper, we propose a Dynamic Ensemble Reasoning paradigm, called DER to integrate the strengths of multiple LLM experts conditioned on dynamic inputs. Specifically, we model the LLM ensemble reasoning problem as a Markov Decision Process (MDP), wherein an agent sequentially takes inputs to request knowledge from an LLM candidate and passes the output to a subsequent LLM candidate. Moreover, we devise a reward function to train a DER-Agent to dynamically select an optimal answering route given the input questions, aiming to achieve the highest performance with as few computational resources as possible. Last, to fully transfer the expert knowledge from the prior LLMs, we develop a Knowledge Transfer Prompt (KTP) that enables the subsequent LLM candidates to transfer complementary knowledge effectively. Experiments demonstrate that our method uses fewer computational resources to achieve better performance compared to state-of-the-art baselines.
Abstract:Remote Sensing (RS) image deblurring and Super-Resolution (SR) are common tasks in computer vision that aim at restoring RS image detail and spatial scale, respectively. However, real-world RS images often suffer from a complex combination of global low-resolution (LR) degeneration and local blurring degeneration. Although carefully designed deblurring and SR models perform well on these two tasks individually, a unified model that performs jointly RS image deblurring and super-resolution (JRSIDSR) task is still challenging due to the vital dilemma of reconstructing the global and local degeneration simultaneously. Additionally, existing methods struggle to capture the interrelationship between deblurring and SR processes, leading to suboptimal results. To tackle these issues, we give a unified theoretical analysis of RS images' spatial and blur degeneration processes and propose a dual-branch parallel network named AKMD-Net for the JRSIDSR task. AKMD-Net consists of two main branches: deblurring and super-resolution branches. In the deblurring branch, we design a pixel-adjustable kernel block (PAKB) to estimate the local and spatial-varying blur kernels. In the SR branch, a multi-domain attention block (MDAB) is proposed to capture the global contextual information enhanced with high-frequency details. Furthermore, we develop an adaptive feature fusion (AFF) module to model the contextual relationships between the deblurring and SR branches. Finally, we design an adaptive Wiener loss (AW Loss) to depress the prior noise in the reconstructed images. Extensive experiments demonstrate that the proposed AKMD-Net achieves state-of-the-art (SOTA) quantitative and qualitative performance on commonly used RS image datasets. The source code is publicly available at https://github.com/zpc456/AKMD-Net.
Abstract:We present Florence-VL, a new family of multimodal large language models (MLLMs) with enriched visual representations produced by Florence-2, a generative vision foundation model. Unlike the widely used CLIP-style vision transformer trained by contrastive learning, Florence-2 can capture different levels and aspects of visual features, which are more versatile to be adapted to diverse downstream tasks. We propose a novel feature-fusion architecture and an innovative training recipe that effectively integrates Florence-2's visual features into pretrained LLMs, such as Phi 3.5 and LLama 3. In particular, we propose "depth-breath fusion (DBFusion)" to fuse the visual features extracted from different depths and under multiple prompts. Our model training is composed of end-to-end pretraining of the whole model followed by finetuning of the projection layer and the LLM, on a carefully designed recipe of diverse open-source datasets that include high-quality image captions and instruction-tuning pairs. Our quantitative analysis and visualization of Florence-VL's visual features show its advantages over popular vision encoders on vision-language alignment, where the enriched depth and breath play important roles. Florence-VL achieves significant improvements over existing state-of-the-art MLLMs across various multi-modal and vision-centric benchmarks covering general VQA, perception, hallucination, OCR, Chart, knowledge-intensive understanding, etc. To facilitate future research, our models and the complete training recipe are open-sourced. https://github.com/JiuhaiChen/Florence-VL
Abstract:The recent Segment Anything Model (SAM) represents a significant breakthrough in scaling segmentation models, delivering strong performance across various downstream applications in the RGB modality. However, directly applying SAM to emerging visual modalities, such as depth and event data results in suboptimal performance in multi-modal segmentation tasks. In this paper, we make the first attempt to adapt SAM for multi-modal semantic segmentation by proposing a Mixture of Low-Rank Adaptation Experts (MoE-LoRA) tailored for different input visual modalities. By training only the MoE-LoRA layers while keeping SAM's weights frozen, SAM's strong generalization and segmentation capabilities can be preserved for downstream tasks. Specifically, to address cross-modal inconsistencies, we propose a novel MoE routing strategy that adaptively generates weighted features across modalities, enhancing multi-modal feature integration. Additionally, we incorporate multi-scale feature extraction and fusion by adapting SAM's segmentation head and introducing an auxiliary segmentation head to combine multi-scale features for improved segmentation performance effectively. Extensive experiments were conducted on three multi-modal benchmarks: DELIVER, MUSES, and MCubeS. The results consistently demonstrate that the proposed method significantly outperforms state-of-the-art approaches across diverse scenarios. Notably, under the particularly challenging condition of missing modalities, our approach exhibits a substantial performance gain, achieving an improvement of 32.15% compared to existing methods.
Abstract:Deep neural networks exhibit vulnerability to adversarial examples that can transfer across different models. A particularly challenging problem is developing transferable targeted attacks that can mislead models into predicting specific target classes. While various methods have been proposed to enhance attack transferability, they often incur substantial computational costs while yielding limited improvements. Recent clean feature mixup methods use random clean features to perturb the feature space but lack optimization for disrupting adversarial examples, overlooking the advantages of attack-specific perturbations. In this paper, we propose Feature Tuning Mixup (FTM), a novel method that enhances targeted attack transferability by combining both random and optimized noises in the feature space. FTM introduces learnable feature perturbations and employs an efficient stochastic update strategy for optimization. These learnable perturbations facilitate the generation of more robust adversarial examples with improved transferability. We further demonstrate that attack performance can be enhanced through an ensemble of multiple FTM-perturbed surrogate models. Extensive experiments on the ImageNet-compatible dataset across various models demonstrate that our method achieves significant improvements over state-of-the-art methods while maintaining low computational cost.
Abstract:Accurate segmentation of lesions in pancreatic endoscopic ultrasound (EUS) images is crucial for effective diagnosis and treatment. However, the collection of enough crisp EUS images for effective diagnosis is arduous. Recently, domain adaptation (DA) has been employed to address these challenges by leveraging related knowledge from other domains. Most DA methods only focus on multi-view representations of the same organ, which makes it still tough to clearly depict the tumor lesion area with limited semantic information. Although transferring homogeneous similarity from different organs could benefit the issue, there is a lack of relevant work due to the enormous domain gap between them. To address these challenges, we propose the Cross-Organ Tumor Segmentation Networks (COTS-Nets), consisting of a universal network and an auxiliary network. The universal network utilizes boundary loss to learn common boundary information of different tumors, enabling accurate delineation of tumors in EUS despite limited and low-quality data. Simultaneously, we incorporate consistency loss in the universal network to align the prediction of pancreatic EUS with tumor boundaries from other organs to mitigate the domain gap. To further reduce the cross-organ domain gap, the auxiliary network integrates multi-scale features from different organs, aiding the universal network in acquiring domain-invariant knowledge. Systematic experiments demonstrate that COTS-Nets significantly improves the accuracy of pancreatic cancer diagnosis. Additionally, we developed the Pancreatic Cancer Endoscopic Ultrasound (PCEUS) dataset, comprising 501 pathologically confirmed pancreatic EUS images, to facilitate model development.
Abstract:Lossless speculative decoding accelerates target large language model (LLM) inference by employing a lightweight draft model for generating tree-structured candidates, which are subsequently verified in parallel by the target LLM. Currently, effective approaches leverage feature-level rather than token-level autoregression within the draft model to facilitate more straightforward predictions and enhanced knowledge distillation. In this paper, we reassess these approaches and propose FSPAD (Feature Sampling and Partial Alignment Distillation for Lossless Speculative Decoding), which introduces two straightforward and effective components within the existing framework to boost lossless speculative decoding. Firstly, FSPAD utilizes token embeddings to sample features of the target LLM in high-dimensional space before feeding them into the draft model, due to the inherent uncertainty of the features preventing the draft model from obtaining the specific token output by the target LLM. Secondly, FSPAD introduces partial alignment distillation to weaken the draft model's connection between features and logits, aiming to reduce the conflict between feature alignment and logit confidence during training. Our experiments include both greedy and non-greedy decoding on the largest and smallest models from the Vicuna and LLaMA3-Instruct series, as well as tasks in multi-turn conversation, translation, summarization, question answering, mathematical reasoning, and retrieval-augmented generation. The results show that FSPAD outperforms the state-of-the-art method across all the aforementioned tasks and target LLMs.