Abstract:Deep neural networks exhibit vulnerability to adversarial examples that can transfer across different models. A particularly challenging problem is developing transferable targeted attacks that can mislead models into predicting specific target classes. While various methods have been proposed to enhance attack transferability, they often incur substantial computational costs while yielding limited improvements. Recent clean feature mixup methods use random clean features to perturb the feature space but lack optimization for disrupting adversarial examples, overlooking the advantages of attack-specific perturbations. In this paper, we propose Feature Tuning Mixup (FTM), a novel method that enhances targeted attack transferability by combining both random and optimized noises in the feature space. FTM introduces learnable feature perturbations and employs an efficient stochastic update strategy for optimization. These learnable perturbations facilitate the generation of more robust adversarial examples with improved transferability. We further demonstrate that attack performance can be enhanced through an ensemble of multiple FTM-perturbed surrogate models. Extensive experiments on the ImageNet-compatible dataset across various models demonstrate that our method achieves significant improvements over state-of-the-art methods while maintaining low computational cost.
Abstract:Unrestricted adversarial attacks present a serious threat to deep learning models and adversarial defense techniques. They pose severe security problems for deep learning applications because they can effectively bypass defense mechanisms. However, previous attack methods often utilize Generative Adversarial Networks (GANs), which are not theoretically provable and thus generate unrealistic examples by incorporating adversarial objectives, especially for large-scale datasets like ImageNet. In this paper, we propose a new method, called AdvDiff, to generate unrestricted adversarial examples with diffusion models. We design two novel adversarial guidance techniques to conduct adversarial sampling in the reverse generation process of diffusion models. These two techniques are effective and stable to generate high-quality, realistic adversarial examples by integrating gradients of the target classifier interpretably. Experimental results on MNIST and ImageNet datasets demonstrate that AdvDiff is effective to generate unrestricted adversarial examples, which outperforms GAN-based methods in terms of attack performance and generation quality.
Abstract:Adversarial attacks can mislead deep neural networks (DNNs) by adding imperceptible perturbations to benign examples. The attack transferability enables adversarial examples to attack black-box DNNs with unknown architectures or parameters, which poses threats to many real-world applications. We find that existing transferable attacks do not distinguish between style and content features during optimization, limiting their attack transferability. To improve attack transferability, we propose a novel attack method called style-less perturbation (StyLess). Specifically, instead of using a vanilla network as the surrogate model, we advocate using stylized networks, which encode different style features by perturbing an adaptive instance normalization. Our method can prevent adversarial examples from using non-robust style features and help generate transferable perturbations. Comprehensive experiments show that our method can significantly improve the transferability of adversarial examples. Furthermore, our approach is generic and can outperform state-of-the-art transferable attacks when combined with other attack techniques.