Abstract:In recent research, adversarial attacks on person detectors using patches or static 3D model-based texture modifications have struggled with low success rates due to the flexible nature of human movement. Modeling the 3D deformations caused by various actions has been a major challenge. Fortunately, advancements in Neural Radiance Fields (NeRF) for dynamic human modeling offer new possibilities. In this paper, we introduce UV-Attack, a groundbreaking approach that achieves high success rates even with extensive and unseen human actions. We address the challenge above by leveraging dynamic-NeRF-based UV mapping. UV-Attack can generate human images across diverse actions and viewpoints, and even create novel actions by sampling from the SMPL parameter space. While dynamic NeRF models are capable of modeling human bodies, modifying clothing textures is challenging because they are embedded in neural network parameters. To tackle this, UV-Attack generates UV maps instead of RGB images and modifies the texture stacks. This approach enables real-time texture edits and makes the attack more practical. We also propose a novel Expectation over Pose Transformation loss (EoPT) to improve the evasion success rate on unseen poses and views. Our experiments show that UV-Attack achieves a 92.75% attack success rate against the FastRCNN model across varied poses in dynamic video settings, significantly outperforming the state-of-the-art AdvCamou attack, which only had a 28.50% ASR. Moreover, we achieve 49.5% ASR on the latest YOLOv8 detector in black-box settings. This work highlights the potential of dynamic NeRF-based UV mapping for creating more effective adversarial attacks on person detectors, addressing key challenges in modeling human movement and texture modification.
Abstract:Although large language models (LLMs) store vast amount of knowledge in their parameters, they still have limitations in the memorization and utilization of certain knowledge, leading to undesired behaviors such as generating untruthful and inaccurate responses. This highlights the critical need to understand the knowledge boundary of LLMs, a concept that remains inadequately defined in existing research. In this survey, we propose a comprehensive definition of the LLM knowledge boundary and introduce a formalized taxonomy categorizing knowledge into four distinct types. Using this foundation, we systematically review the field through three key lenses: the motivation for studying LLM knowledge boundaries, methods for identifying these boundaries, and strategies for mitigating the challenges they present. Finally, we discuss open challenges and potential research directions in this area. We aim for this survey to offer the community a comprehensive overview, facilitate access to key issues, and inspire further advancements in LLM knowledge research.
Abstract:With the rise and widespread use of Large Language Models (LLMs), ensuring their safety is crucial to prevent harm to humans and promote ethical behaviors. However, directly assessing value valence (i.e., support or oppose) by leveraging large-scale data training is untrustworthy and inexplainable. We assume that emulating humans to rely on social norms to make moral decisions can help LLMs understand and predict moral judgment. However, capturing human values remains a challenge, as multiple related norms might conflict in specific contexts. Consider norms that are upheld by the majority and promote the well-being of society are more likely to be accepted and widely adopted (e.g., "don't cheat,"). Therefore, it is essential for LLM to identify the appropriate norms for a given scenario before making moral decisions. To this end, we introduce a novel moral judgment approach called \textit{ClarityEthic} that leverages LLMs' reasoning ability and contrastive learning to uncover relevant social norms for human actions from different perspectives and select the most reliable one to enhance judgment accuracy. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in moral judgment tasks. Moreover, human evaluations confirm that the generated social norms provide plausible explanations that support the judgments. This suggests that modeling human moral judgment with the emulating humans moral strategy is promising for improving the ethical behaviors of LLMs.
Abstract:The rapid increase of space assets represented by small satellites in low Earth orbit can enable ubiquitous digital services for everyone. However, due to the dynamic space environment, numerous space objects, complex atmospheric conditions, and unexpected events can easily introduce adverse conditions affecting space safety, operations, and sustainability of the outer space environment. This challenge calls for responsive, effective satellite object detection (SOD) solutions that allow a small satellite to assess and respond to collision risks, with the consideration of constrained resources on a small satellite platform. This paper discusses the SOD tasks and onboard deep learning (DL) approach to the tasks. Two new DL models are proposed, called GELAN-ViT and GELAN-RepViT, which incorporate vision transformer (ViT) into the Generalized Efficient Layer Aggregation Network (GELAN) architecture and address limitations by separating the convolutional neural network and ViT paths. These models outperform the state-of-the-art YOLOv9-t in terms of mean average precision (mAP) and computational costs. On the SOD dataset, our proposed models can achieve around 95% mAP50 with giga-floating point operations (GFLOPs) reduced by over 5.0. On the VOC 2012 dataset, they can achieve $\geq$ 60.7% mAP50 with GFLOPs reduced by over 5.2.
Abstract:Fine-tuning large language models (LLMs) on human preferences, typically through reinforcement learning from human feedback (RLHF), has proven successful in enhancing their capabilities. However, ensuring the safety of LLMs during the fine-tuning remains a critical concern, and mitigating the potential conflicts in safety and helpfulness is costly in RLHF. To address this issue, we propose a supervised learning framework called Bi-Factorial Preference Optimization (BFPO), which re-parameterizes a joint RLHF objective of both safety and helpfulness into a single supervised learning objective. In the supervised optimization, a labeling function is used to capture global preferences ranking to balance both safety and helpfulness. To evaluate BFPO, we develop a benchmark including comprehensive discriminative and generative tasks for helpfulness and harmlessness. The results indicate that our method significantly outperforms existing approaches in both safety and helpfulness. Moreover, BFPO eliminates the need for human prompting and annotation in LLM fine-tuning while achieving the same level of safety as methods that heavily rely on human labor, with less than 10% of the computational resources. The training recipes and models will be released.
Abstract:Large Language Models (LLMs) have shown remarkable abilities across various tasks, yet their development has predominantly centered on high-resource languages like English and Chinese, leaving low-resource languages underserved. To address this disparity, we present SeaLLMs 3, the latest iteration of the SeaLLMs model family, tailored for Southeast Asian languages. This region, characterized by its rich linguistic diversity, has lacked adequate language technology support. SeaLLMs 3 aims to bridge this gap by covering a comprehensive range of languages spoken in this region, including English, Chinese, Indonesian, Vietnamese, Thai, Tagalog, Malay, Burmese, Khmer, Lao, Tamil, and Javanese. Leveraging efficient language enhancement techniques and a specially constructed instruction tuning dataset, SeaLLMs 3 significantly reduces training costs while maintaining high performance and versatility. Our model excels in tasks such as world knowledge, mathematical reasoning, translation, and instruction following, achieving state-of-the-art performance among similarly sized models. Additionally, we prioritized safety and reliability by addressing both general and culture-specific considerations and incorporated mechanisms to reduce hallucinations. This work underscores the importance of inclusive AI, showing that advanced LLM capabilities can benefit underserved linguistic and cultural communities.
Abstract:As LLMs evolve on a daily basis, there is an urgent need for a trustworthy evaluation method that can provide robust evaluation results in a timely fashion. Currently, as static benchmarks are prone to contamination concerns, users tend to trust human voting platforms, such as Chatbot Arena. However, human annotations require extensive manual efforts. To provide an automatic, robust, and trustworthy evaluation framework, we innovatively propose the Auto-Arena of LLMs, which automates the entire evaluation process with LLM agents. Firstly, an examiner LLM devises queries. Then, a pair of candidate LLMs engage in a multi-round peer-battle around the query, during which the LLM's true performance gaps become visible. Finally, a committee of LLM judges collectively discuss and determine the winner, which alleviates bias and promotes fairness. In our extensive experiment on the 17 newest LLMs, Auto-Arena shows the highest correlation with human preferences, providing a promising alternative to human evaluation platforms.
Abstract:We propose and study a realistic Continual Learning (CL) setting where learning algorithms are granted a restricted computational budget per time step while training. We apply this setting to large-scale semi-supervised Continual Learning scenarios with sparse label rates. Previous proficient CL methods perform very poorly in this challenging setting. Overfitting to the sparse labeled data and insufficient computational budget are the two main culprits for such a poor performance. Our new setting encourages learning methods to effectively and efficiently utilize the unlabeled data during training. To that end, we propose a simple but highly effective baseline, DietCL, which utilizes both unlabeled and labeled data jointly. DietCL meticulously allocates computational budget for both types of data. We validate our baseline, at scale, on several datasets, e.g., CLOC, ImageNet10K, and CGLM, under constraint budget setups. DietCL outperforms, by a large margin, all existing supervised CL algorithms as well as more recent continual semi-supervised methods. Our extensive analysis and ablations demonstrate that DietCL is stable under a full spectrum of label sparsity, computational budget, and various other ablations.
Abstract:Large language models (LLMs) have demonstrated strong multilingual capabilities; yet, they are mostly English-centric due to the imbalanced training corpora. Existing works leverage this phenomenon to improve their multilingual performances on NLP tasks. In this work, we extend the evaluation from NLP tasks to real user queries. We find that even though translation into English can help improve the performance of multilingual NLP tasks for English-centric LLMs, it may not be optimal for all scenarios. For culture-related tasks that need deep language understanding, prompting in the native language proves to be more promising since it can capture the nuances related to culture and language. Therefore, we advocate for more efforts towards the development of strong multilingual LLMs instead of just English-centric LLMs.
Abstract:Large language models (LLMs) demonstrate remarkable performance across a spectrum of languages. In this work, we delve into the question: How do LLMs handle multilingualism? We introduce a framework that depicts LLMs' processing of multilingual inputs: In the first several layers, LLMs understand the question, converting multilingual inputs into English to facilitate the task-solving phase. In the intermediate layers, LLMs engage in problem-solving by thinking in English and incorporating multilingual knowledge to obtain factual content, leveraging the self-attention and feed-forward structures, respectively. In the last several layers, LLMs generate responses that align with the original language of the query. In addition, we investigate the existence of language-specific neurons when processing a certain language. To detect neurons activated by the input language, even without labels, we innovatively design a Parallel Language specific Neuron Detection ($\texttt{PLND}$) method that effectively measures the significance of neurons when handling multilingual inputs. By comprehensive ablation analysis through deactivating neurons of different layers and structures, we verify the framework that we propose. Additionally, we demonstrate that we can utilize such a framework to effectively enhance the multilingual ability with much less training effort.