Abstract:Sparse autoencoders (SAEs) \citep{bricken2023monosemanticity,gao2024scalingevaluatingsparseautoencoders} rely on dictionary learning to extract interpretable features from neural networks at scale in an unsupervised manner, with applications to representation engineering and information retrieval. SAEs are, however, computationally expensive \citep{lieberum2024gemmascopeopensparse}, especially when multiple SAEs of different sizes are needed. We show that dictionary importance in vanilla SAEs follows a power law. We compare progressive coding based on subset pruning of SAEs -- to jointly training nested SAEs, or so-called {\em Matryoshka} SAEs \citep{bussmann2024learning,nabeshima2024Matryoshka} -- on a language modeling task. We show Matryoshka SAEs exhibit lower reconstruction loss and recaptured language modeling loss, as well as higher representational similarity. Pruned vanilla SAEs are more interpretable, however. We discuss the origins and implications of this trade-off.
Abstract:Federated learning (FL) is a machine learning approach that allows multiple devices or institutions to collaboratively train a model without sharing their local data with a third-party. FL is considered a promising way to address patient privacy concerns in medical artificial intelligence. The ethical risks of medical FL systems themselves, however, have thus far been underexamined. This paper aims to address this gap. We argue that medical FL presents a new variety of opacity -- federation opacity -- that, in turn, generates a distinctive double black box problem in healthcare AI. We highlight several instances in which the anticipated benefits of medical FL may be exaggerated, and conclude by highlighting key challenges that must be overcome to make FL ethically feasible in medicine.
Abstract:This paper explores the effectiveness of Multimodal Large Language models (MLLMs) as assistive technologies for visually impaired individuals. We conduct a user survey to identify adoption patterns and key challenges users face with such technologies. Despite a high adoption rate of these models, our findings highlight concerns related to contextual understanding, cultural sensitivity, and complex scene understanding, particularly for individuals who may rely solely on them for visual interpretation. Informed by these results, we collate five user-centred tasks with image and video inputs, including a novel task on Optical Braille Recognition. Our systematic evaluation of twelve MLLMs reveals that further advancements are necessary to overcome limitations related to cultural context, multilingual support, Braille reading comprehension, assistive object recognition, and hallucinations. This work provides critical insights into the future direction of multimodal AI for accessibility, underscoring the need for more inclusive, robust, and trustworthy visual assistance technologies.
Abstract:Li et al. (2023) used the Othello board game as a test case for the ability of GPT-2 to induce world models, and were followed up by Nanda et al. (2023b). We briefly discuss the original experiments, expanding them to include more language models with more comprehensive probing. Specifically, we analyze sequences of Othello board states and train the model to predict the next move based on previous moves. We evaluate seven language models (GPT-2, T5, Bart, Flan-T5, Mistral, LLaMA-2, and Qwen2.5) on the Othello task and conclude that these models not only learn to play Othello, but also induce the Othello board layout. We find that all models achieve up to 99% accuracy in unsupervised grounding and exhibit high similarity in the board features they learned. This provides considerably stronger evidence for the Othello World Model Hypothesis than previous works.
Abstract:What ethical concerns, if any, do LLM researchers have? We introduce EthiCon, a corpus of 1,580 ethical concern statements extracted from scientific papers published in the ACL Anthology. We extract ethical concern keywords from the statements and show promising results in automating the concern identification process. Through a survey, we compare the ethical concerns of the corpus to the concerns listed by the general public and professionals in the field. Finally, we compare our retrieved ethical concerns with existing taxonomies pointing to gaps and future research directions.
Abstract:Question answering is a natural language understanding task that involves reasoning over both explicit context and unstated, relevant domain knowledge. Large language models (LLMs), which underpin most contemporary question answering systems, struggle to induce how concepts relate in specialized domains such as medicine. Existing medical LLMs are also costly to train. In this work, we present MEG, a parameter-efficient approach for medical knowledge-augmented LLMs. MEG uses a lightweight mapping network to integrate graph embeddings into the LLM, enabling it to leverage external knowledge in a cost-effective way. We evaluate our method on four popular medical multiple-choice datasets and show that LLMs greatly benefit from the factual grounding provided by knowledge graph embeddings. MEG attains an average of +10.2% accuracy over the Mistral-Instruct baseline, and +6.7% over specialized models like BioMistral. We also show results based on Llama-3. Finally, we show that MEG's performance remains robust to the choice of graph encoder.
Abstract:Large Language Models (LLMs) store and retrieve vast amounts of factual knowledge acquired during pre-training. Prior research has localized and identified mechanisms behind knowledge recall; however, it has primarily focused on English monolingual models. The question of how these processes generalize to other languages and multilingual LLMs remains unexplored. In this paper, we address this gap by conducting a comprehensive analysis of two highly multilingual LLMs. We assess the extent to which previously identified components and mechanisms of factual recall in English apply to a multilingual context. Then, we examine when language plays a role in the recall process, uncovering evidence of language-independent and language-dependent mechanisms.
Abstract:Knowledge claims are abundant in the literature on large language models (LLMs); but can we say that GPT-4 truly "knows" the Earth is round? To address this question, we review standard definitions of knowledge in epistemology and we formalize interpretations applicable to LLMs. In doing so, we identify inconsistencies and gaps in how current NLP research conceptualizes knowledge with respect to epistemological frameworks. Additionally, we conduct a survey of 100 professional philosophers and computer scientists to compare their preferences in knowledge definitions and their views on whether LLMs can really be said to know. Finally, we suggest evaluation protocols for testing knowledge in accordance to the most relevant definitions.
Abstract:Multilingual large language models (LLMs) seem to generalize somewhat across languages. We hypothesize this is a result of implicit vector space alignment. Evaluating such alignment, we see that larger models exhibit very high-quality linear alignments between corresponding concepts in different languages. Our experiments show that multilingual LLMs suffer from two familiar weaknesses: generalization works best for languages with similar typology, and for abstract concepts. For some models, e.g., the Llama-2 family of models, prompt-based embeddings align better than word embeddings, but the projections are less linear -- an observation that holds across almost all model families, indicating that some of the implicitly learned alignments are broken somewhat by prompt-based methods.
Abstract:Users post numerous product-related questions on e-commerce platforms, affecting their purchase decisions. Product-related question answering (PQA) entails utilizing product-related resources to provide precise responses to users. We propose a novel task of Multilingual Cross-market Product-based Question Answering (MCPQA) and define the task as providing answers to product-related questions in a main marketplace by utilizing information from another resource-rich auxiliary marketplace in a multilingual context. We introduce a large-scale dataset comprising over 7 million questions from 17 marketplaces across 11 languages. We then perform automatic translation on the Electronics category of our dataset, naming it as McMarket. We focus on two subtasks: review-based answer generation and product-related question ranking. For each subtask, we label a subset of McMarket using an LLM and further evaluate the quality of the annotations via human assessment. We then conduct experiments to benchmark our dataset, using models ranging from traditional lexical models to LLMs in both single-market and cross-market scenarios across McMarket and the corresponding LLM subset. Results show that incorporating cross-market information significantly enhances performance in both tasks.