Abstract:As Vision and Language models (VLMs) become accessible across the globe, it is important that they demonstrate cultural knowledge. In this paper, we introduce CROPE, a visual question answering benchmark designed to probe the knowledge of culture-specific concepts and evaluate the capacity for cultural adaptation through contextual information. This allows us to distinguish between parametric knowledge acquired during training and contextual knowledge provided during inference via visual and textual descriptions. Our evaluation of several state-of-the-art open VLMs shows large performance disparities between culture-specific and common concepts in the parametric setting. Moreover, experiments with contextual knowledge indicate that models struggle to effectively utilize multimodal information and bind culture-specific concepts to their depictions. Our findings reveal limitations in the cultural understanding and adaptability of current VLMs that need to be addressed toward more culturally inclusive models.
Abstract:This study explores replacing Transformers in Visual Language Models (VLMs) with Mamba, a recent structured state space model (SSM) that demonstrates promising performance in sequence modeling. We test models up to 3B parameters under controlled conditions, showing that Mamba-based VLMs outperforms Transformers-based VLMs in captioning, question answering, and reading comprehension. However, we find that Transformers achieve greater performance in visual grounding and the performance gap widens with scale. We explore two hypotheses to explain this phenomenon: 1) the effect of task-agnostic visual encoding on the updates of the hidden states, and 2) the difficulty in performing visual grounding from the perspective of in-context multimodal retrieval. Our results indicate that a task-aware encoding yields minimal performance gains on grounding, however, Transformers significantly outperform Mamba at in-context multimodal retrieval. Overall, Mamba shows promising performance on tasks where the correct output relies on a summary of the image but struggles when retrieval of explicit information from the context is required.
Abstract:Continual learning focuses on incrementally training a model on a sequence of tasks with the aim of learning new tasks while minimizing performance drop on previous tasks. Existing approaches at the intersection of Continual Learning and Visual Question Answering (VQA) do not study how the multimodal nature of the input affects the learning dynamics of a model. In this paper, we demonstrate that each modality evolves at different rates across a continuum of tasks and that this behavior occurs in established encoder-only models as well as modern recipes for developing Vision & Language (VL) models. Motivated by this observation, we propose a modality-aware feature distillation (MAFED) approach which outperforms existing baselines across models of varying scale in three multimodal continual learning settings. Furthermore, we provide ablations showcasing that modality-aware distillation complements experience replay. Overall, our results emphasize the importance of addressing modality-specific dynamics to prevent forgetting in multimodal continual learning.
Abstract:Augmenting Large Language Models (LLMs) with image-understanding capabilities has resulted in a boom of high-performing Vision-Language models (VLMs). While studying the alignment of LLMs to human values has received widespread attention, the safety of VLMs has not received the same attention. In this paper, we explore the impact of jailbreaking on three state-of-the-art VLMs, each using a distinct modeling approach. By comparing each VLM to their respective LLM backbone, we find that each VLM is more susceptible to jailbreaking. We consider this as an undesirable outcome from visual instruction-tuning, which imposes a forgetting effect on an LLM's safety guardrails. Therefore, we provide recommendations for future work based on evaluation strategies that aim to highlight the weaknesses of a VLM, as well as take safety measures into account during visual instruction tuning.
Abstract:Interactive and embodied tasks pose at least two fundamental challenges to existing Vision & Language (VL) models, including 1) grounding language in trajectories of actions and observations, and 2) referential disambiguation. To tackle these challenges, we propose an Embodied MultiModal Agent (EMMA): a unified encoder-decoder model that reasons over images and trajectories, and casts action prediction as multimodal text generation. By unifying all tasks as text generation, EMMA learns a language of actions which facilitates transfer across tasks. Different to previous modular approaches with independently trained components, we use a single multitask model where each task contributes to goal completion. EMMA performs on par with similar models on several VL benchmarks and sets a new state-of-the-art performance (36.81% success rate) on the Dialog-guided Task Completion (DTC), a benchmark to evaluate dialog-guided agents in the Alexa Arena
Abstract:Automated image captioning has the potential to be a useful tool for people with vision impairments. Images taken by this user group are often noisy, which leads to incorrect and even unsafe model predictions. In this paper, we propose a quality-agnostic framework to improve the performance and robustness of image captioning models for visually impaired people. We address this problem from three angles: data, model, and evaluation. First, we show how data augmentation techniques for generating synthetic noise can address data sparsity in this domain. Second, we enhance the robustness of the model by expanding a state-of-the-art model to a dual network architecture, using the augmented data and leveraging different consistency losses. Our results demonstrate increased performance, e.g. an absolute improvement of 2.15 on CIDEr, compared to state-of-the-art image captioning networks, as well as increased robustness to noise with up to 3 points improvement on CIDEr in more noisy settings. Finally, we evaluate the prediction reliability using confidence calibration on images with different difficulty/noise levels, showing that our models perform more reliably in safety-critical situations. The improved model is part of an assisted living application, which we develop in partnership with the Royal National Institute of Blind People.
Abstract:Recent video+language datasets cover domains where the interaction is highly structured, such as instructional videos, or where the interaction is scripted, such as TV shows. Both of these properties can lead to spurious cues to be exploited by models rather than learning to ground language. In this paper, we present GrOunded footbAlL commentaries (GOAL), a novel dataset of football (or `soccer') highlights videos with transcribed live commentaries in English. As the course of a game is unpredictable, so are commentaries, which makes them a unique resource to investigate dynamic language grounding. We also provide state-of-the-art baselines for the following tasks: frame reordering, moment retrieval, live commentary retrieval and play-by-play live commentary generation. Results show that SOTA models perform reasonably well in most tasks. We discuss the implications of these results and suggest new tasks for which GOAL can be used. Our codebase is available at: https://gitlab.com/grounded-sport-convai/goal-baselines.