Abstract:Large-scale Speech Language Models (SpeechLMs) have enabled voice assistants capable of understanding natural spoken queries and performing complex tasks. However, existing speech benchmarks primarily focus on isolated capabilities such as transcription, or question-answering, and do not systematically evaluate agentic scenarios encompassing multilingual and cultural understanding, as well as adversarial robustness. To address this, we introduce VoiceAgentBench, a comprehensive benchmark designed to evaluate SpeechLMs in realistic spoken agentic settings. It comprises over 5,500 synthetic spoken queries, including dialogues grounded in Indian context, covering single-tool invocations, multi-tool workflows, multi-turn interactions, and safety evaluations. The benchmark supports English, Hindi, and 5 other Indian languages, reflecting real-world linguistic and cultural diversity. We simulate speaker variability using a novel sampling algorithm that selects audios for TTS voice conversion based on its speaker embeddings, maximizing acoustic and speaker diversity. Our evaluation measures tool selection accuracy, structural consistency, and the correctness of tool invocations, including adversarial robustness. Our experiments reveal significant gaps in contextual tool orchestration tasks, Indic generalization, and adversarial robustness, exposing critical limitations of current SpeechLMs.
Abstract:The effectiveness of Large Language Models (LLMs) depends heavily on the availability of high-quality post-training data, particularly instruction-tuning and preference-based examples. Existing open-source datasets, however, often lack multilingual coverage, cultural grounding, and suffer from task diversity gaps that are especially pronounced for Indian languages. We introduce a human-in-the-loop pipeline that combines translations with synthetic expansion to produce reliable and diverse Indic post-training data. Using this pipeline, we curate two datasets: Pragyaan-IT (22.5K) and Pragyaan-Align (100K) across 10 Indian languages covering 13 broad and 56 sub-categories, leveraging 57 diverse datasets. Our dataset protocol incorporates several often-overlooked dimensions and emphasize task diversity, multi-turn dialogue, instruction fidelity, safety alignment, and preservation of cultural nuance, providing a foundation for more inclusive and effective multilingual LLMs.
Abstract:As image generation models grow increasingly powerful and accessible, concerns around authenticity, ownership, and misuse of synthetic media have become critical. The ability to generate lifelike images indistinguishable from real ones introduces risks such as misinformation, deepfakes, and intellectual property violations. Traditional watermarking methods either degrade image quality, are easily removed, or require access to confidential model internals - making them unsuitable for secure and scalable deployment. We are the first to introduce ZK-WAGON, a novel system for watermarking image generation models using the Zero-Knowledge Succinct Non Interactive Argument of Knowledge (ZK-SNARKs). Our approach enables verifiable proof of origin without exposing model weights, generation prompts, or any sensitive internal information. We propose Selective Layer ZK-Circuit Creation (SL-ZKCC), a method to selectively convert key layers of an image generation model into a circuit, reducing proof generation time significantly. Generated ZK-SNARK proofs are imperceptibly embedded into a generated image via Least Significant Bit (LSB) steganography. We demonstrate this system on both GAN and Diffusion models, providing a secure, model-agnostic pipeline for trustworthy AI image generation.
Abstract:Prior work on input-token importance in auto-regressive transformers has relied on Softmax-normalized attention weights, which obscure the richer structure of pre-Softmax query-key logits. We introduce RCStat, a statistical framework that harnesses raw attention logits via Relative Contextualization (RC), a random variable measuring contextual alignment between token segments, and derive an efficient upper bound for RC. We demonstrate two applications: (i) Key-Value compression, where RC-based thresholds drive adaptive key-value eviction for substantial cache reduction with minimal quality loss; and (ii) Attribution, where RC yields higher-fidelity token-, sentence-, and chunk-level explanations than post-Softmax methods. Across question answering, summarization, and attribution benchmarks, RCStat achieves significant empirical gains, delivering state-of-the-art compression and attribution performance without any model retraining.
Abstract:In this work, we provide the system description of our submission as part of the English to Lowres Multimodal Translation Task at the Workshop on Asian Translation (WAT2024). We introduce Chitranuvad, a multimodal model that effectively integrates Multilingual LLM and a vision module for Multimodal Translation. Our method uses a ViT image encoder to extract visual representations as visual token embeddings which are projected to the LLM space by an adapter layer and generates translation in an autoregressive fashion. We participated in all the three tracks (Image Captioning, Text only and Multimodal translation tasks) for Indic languages (ie. English translation to Hindi, Bengali and Malyalam) and achieved SOTA results for Hindi in all of them on the Challenge set while remaining competitive for the other languages in the shared task.
Abstract:Recent multimodal foundation models are primarily trained on English or high resource European language data, which hinders their applicability to other medium and low-resource languages. To address this limitation, we introduce Chitrarth (Chitra: Image; Artha: Meaning), an inclusive Vision-Language Model (VLM), specifically targeting the rich linguistic diversity and visual reasoning across 10 prominent Indian languages. Our model effectively integrates a state-of-the-art (SOTA) multilingual Large Language Model (LLM) with a vision module, primarily trained on multilingual image-text data. Furthermore, we also introduce BharatBench, a comprehensive framework for evaluating VLMs across various Indian languages, ultimately contributing to more diverse and effective AI systems. Our model achieves SOTA results for benchmarks across low resource languages while retaining its efficiency in English. Through our research, we aim to set new benchmarks in multilingual-multimodal capabilities, offering substantial improvements over existing models and establishing a foundation to facilitate future advancements in this arena.
Abstract:This study introduces RelCAT (Relation Concept Annotation Toolkit), an interactive tool, library, and workflow designed to classify relations between entities extracted from clinical narratives. Building upon the CogStack MedCAT framework, RelCAT addresses the challenge of capturing complete clinical relations dispersed within text. The toolkit implements state-of-the-art machine learning models such as BERT and Llama along with proven evaluation and training methods. We demonstrate a dataset annotation tool (built within MedCATTrainer), model training, and evaluate our methodology on both openly available gold-standard and real-world UK National Health Service (NHS) hospital clinical datasets. We perform extensive experimentation and a comparative analysis of the various publicly available models with varied approaches selected for model fine-tuning. Finally, we achieve macro F1-scores of 0.977 on the gold-standard n2c2, surpassing the previous state-of-the-art performance, and achieve performance of >=0.93 F1 on our NHS gathered datasets.




Abstract:Literature reviews are an essential component of scientific research, but they remain time-intensive and challenging to write, especially due to the recent influx of research papers. This paper explores the zero-shot abilities of recent Large Language Models (LLMs) in assisting with the writing of literature reviews based on an abstract. We decompose the task into two components: 1. Retrieving related works given a query abstract, and 2. Writing a literature review based on the retrieved results. We analyze how effective LLMs are for both components. For retrieval, we introduce a novel two-step search strategy that first uses an LLM to extract meaningful keywords from the abstract of a paper and then retrieves potentially relevant papers by querying an external knowledge base. Additionally, we study a prompting-based re-ranking mechanism with attribution and show that re-ranking doubles the normalized recall compared to naive search methods, while providing insights into the LLM's decision-making process. In the generation phase, we propose a two-step approach that first outlines a plan for the review and then executes steps in the plan to generate the actual review. To evaluate different LLM-based literature review methods, we create test sets from arXiv papers using a protocol designed for rolling use with newly released LLMs to avoid test set contamination in zero-shot evaluations. We release this evaluation protocol to promote additional research and development in this regard. Our empirical results suggest that LLMs show promising potential for writing literature reviews when the task is decomposed into smaller components of retrieval and planning. Further, we demonstrate that our planning-based approach achieves higher-quality reviews by minimizing hallucinated references in the generated review by 18-26% compared to existing simpler LLM-based generation methods.
Abstract:Automated visualization recommendations (vis-rec) help users to derive crucial insights from new datasets. Typically, such automated vis-rec models first calculate a large number of statistics from the datasets and then use machine-learning models to score or classify multiple visualizations choices to recommend the most effective ones, as per the statistics. However, state-of-the art models rely on very large number of expensive statistics and therefore using such models on large datasets become infeasible due to prohibitively large computational time, limiting the effectiveness of such techniques to most real world complex and large datasets. In this paper, we propose a novel reinforcement-learning (RL) based framework that takes a given vis-rec model and a time-budget from the user and identifies the best set of input statistics that would be most effective while generating the visual insights within a given time budget, using the given model. Using two state-of-the-art vis-rec models applied on three large real-world datasets, we show the effectiveness of our technique in significantly reducing time-to visualize with very small amount of introduced error. Our approach is about 10X times faster compared to the baseline approaches that introduce similar amounts of error.




Abstract:This paper introduces WARLearn, a novel framework designed for adaptive representation learning in challenging and adversarial weather conditions. Leveraging the in-variance principal used in Barlow Twins, we demonstrate the capability to port the existing models initially trained on clear weather data to effectively handle adverse weather conditions. With minimal additional training, our method exhibits remarkable performance gains in scenarios characterized by fog and low-light conditions. This adaptive framework extends its applicability beyond adverse weather settings, offering a versatile solution for domains exhibiting variations in data distributions. Furthermore, WARLearn is invaluable in scenarios where data distributions undergo significant shifts over time, enabling models to remain updated and accurate. Our experimental findings reveal a remarkable performance, with a mean average precision (mAP) of 52.6% on unseen real-world foggy dataset (RTTS). Similarly, in low light conditions, our framework achieves a mAP of 55.7% on unseen real-world low light dataset (ExDark). Notably, WARLearn surpasses the performance of state-of-the-art frameworks including FeatEnHancer, Image Adaptive YOLO, DENet, C2PNet, PairLIE and ZeroDCE, by a substantial margin in adverse weather, improving the baseline performance in both foggy and low light conditions. The WARLearn code is available at https://github.com/ShubhamAgarwal12/WARLearn