Abstract:Large language models (LLMs) require model editing to efficiently update specific knowledge within them and avoid factual errors. Most model editing methods are solely designed for single-time use and lead to a significant forgetting effect after sequential edits over time, referred to as lifelong editing. Current approaches manage sequential edits by freezing original parameters and allocating new adapters for each knowledge modification. However, these methods lack robustness to minor input variations. To address this challenge, we propose ELDER, \textbf{E}nhancing \textbf{L}ifelong mo\textbf{D}el \textbf{E}diting with mixtu\textbf{R}e of Low-Rank Adapter (LoRA). ELDER is an adaptive approach that integrates multiple LoRAs through a router network. It learns to create a continuous and smooth association between data and adapters, thereby enhancing robustness and generalization to semantically equivalent inputs. Additionally, we introduce a novel loss to help learn associations between adapter allocations and edit semantics. A deferral mechanism is also proposed to retain the original LLM capabilities post-edit. Extensive experiments on GPT-2 XL and LLaMA2-7B demonstrate that ELDER effectively edits models in the lifelong setting and exhibits strong scalability, while retaining LLM's general abilities on downstream tasks.
Abstract:Food is a rich and varied dimension of cultural heritage, crucial to both individuals and social groups. To bridge the gap in the literature on the often-overlooked regional diversity in this domain, we introduce FoodieQA, a manually curated, fine-grained image-text dataset capturing the intricate features of food cultures across various regions in China. We evaluate vision-language Models (VLMs) and large language models (LLMs) on newly collected, unseen food images and corresponding questions. FoodieQA comprises three multiple-choice question-answering tasks where models need to answer questions based on multiple images, a single image, and text-only descriptions, respectively. While LLMs excel at text-based question answering, surpassing human accuracy, the open-sourced VLMs still fall short by 41\% on multi-image and 21\% on single-image VQA tasks, although closed-weights models perform closer to human levels (within 10\%). Our findings highlight that understanding food and its cultural implications remains a challenging and under-explored direction.
Abstract:Recent advancements in retrieval-augmented models for image captioning highlight the significance of retrieving related captions for efficient, lightweight models with strong domain-transfer capabilities. While these models demonstrate the success of retrieval augmentation, retrieval models are still far from perfect in practice. Retrieved information can sometimes mislead the model generation, negatively impacting performance. In this paper, we analyze the robustness of the SmallCap retrieval-augmented captioning model. Our analysis shows that SmallCap is sensitive to tokens that appear in the majority of the retrieved captions, and integrated gradients attribution shows that those tokens are likely copied into the final caption. Given these findings, we propose to train the model by sampling retrieved captions from more diverse sets. This reduces the probability that the model learns to copy majority tokens and improves both in-domain and cross-domain performance effectively.
Abstract:The purpose of instruction tuning is enabling zero-shot performance, but instruction tuning has also been shown to improve chain-of-thought reasoning and value alignment (Si et al., 2023). Here we consider the impact on $\textit{consistency}$, i.e., the sensitivity of language models to small perturbations in the input. We compare 10 instruction-tuned LLaMA models to the original LLaMA-7b model and show that almost across-the-board they become more consistent, both in terms of their representations and their predictions in zero-shot and downstream tasks. We explain these improvements through mechanistic analyses of factual recall.
Abstract:Existing works have studied the impacts of the order of words within natural text. They usually analyze it by destroying the original order of words to create a scrambled sequence, and then comparing the models' performance between the original and scrambled sequences. The experimental results demonstrate marginal drops. Considering this findings, different hypothesis about word order is proposed, including ``the order of words is redundant with lexical semantics'', and ``models do not rely on word order''. In this paper, we revisit the aforementioned hypotheses by adding a order reconstruction perspective, and selecting datasets of different spectrum. Specifically, we first select four different datasets, and then design order reconstruction and continuing generation tasks. Empirical findings support that ChatGPT relies on word order to infer, but cannot support or negate the redundancy relations between word order lexical semantics.
Abstract:Pretrained large Vision-Language models have drawn considerable interest in recent years due to their remarkable performance. Despite considerable efforts to assess these models from diverse perspectives, the extent of visual cultural awareness in the state-of-the-art GPT-4V model remains unexplored. To tackle this gap, we extensively probed GPT-4V using the MaRVL benchmark dataset, aiming to investigate its capabilities and limitations in visual understanding with a focus on cultural aspects. Specifically, we introduced three visual related tasks, i.e. caption classification, pairwise captioning, and culture tag selection, to systematically delve into fine-grained visual cultural evaluation. Experimental results indicate that GPT-4V excels at identifying cultural concepts but still exhibits weaker performance in low-resource languages, such as Tamil and Swahili. Notably, through human evaluation, GPT-4V proves to be more culturally relevant in image captioning tasks than the original MaRVL human annotations, suggesting a promising solution for future visual cultural benchmark construction.
Abstract:Representation Learning on Knowledge Graphs (KGs) is essential for downstream tasks. The dominant approach, KG Embedding (KGE), represents entities with independent vectors and faces the scalability challenge. Recent studies propose an alternative way for parameter efficiency, which represents entities by composing entity-corresponding codewords matched from predefined small-scale codebooks. We refer to the process of obtaining corresponding codewords of each entity as entity quantization, for which previous works have designed complicated strategies. Surprisingly, this paper shows that simple random entity quantization can achieve similar results to current strategies. We analyze this phenomenon and reveal that entity codes, the quantization outcomes for expressing entities, have higher entropy at the code level and Jaccard distance at the codeword level under random entity quantization. Therefore, different entities become more easily distinguished, facilitating effective KG representation. The above results show that current quantization strategies are not critical for KG representation, and there is still room for improvement in entity distinguishability beyond current strategies. The code to reproduce our results is available at https://github.com/JiaangL/RandomQuantization.
Abstract:Language models may memorize more than just facts, including entire chunks of texts seen during training. Fair use exemptions to copyright laws typically allow for limited use of copyrighted material without permission from the copyright holder, but typically for extraction of information from copyrighted materials, rather than {\em verbatim} reproduction. This work explores the issue of copyright violations and large language models through the lens of verbatim memorization, focusing on possible redistribution of copyrighted text. We present experiments with a range of language models over a collection of popular books and coding problems, providing a conservative characterization of the extent to which language models can redistribute these materials. Overall, this research highlights the need for further examination and the potential impact on future developments in natural language processing to ensure adherence to copyright regulations. Code is at \url{https://github.com/coastalcph/CopyrightLLMs}.
Abstract:The recently released ChatGPT model demonstrates unprecedented capabilities in zero-shot question-answering. In this work, we probe ChatGPT for its conversational understanding and introduce a conversational framework (protocol) that can be adopted in future studies. The Pok\'emon universe serves as an ideal testing ground for auditing ChatGPT's reasoning capabilities due to its closed world assumption. After bringing ChatGPT's background knowledge (on the Pok\'emon universe) to light, we test its reasoning process when using these concepts in battle scenarios. We then evaluate its ability to acquire new knowledge and include it in its reasoning process. Our ultimate goal is to assess ChatGPT's ability to generalize, combine features, and to acquire and reason over newly introduced knowledge from human feedback. We find that ChatGPT has prior knowledge of the Pokemon universe, which can reason upon in battle scenarios to a great extent, even when new information is introduced. The model performs better with collaborative feedback and if there is an initial phase of information retrieval, but also hallucinates occasionally and is susceptible to adversarial attacks.
Abstract:One of the greatest puzzles of all time is how understanding arises from neural mechanics. Our brains are networks of billions of biological neurons transmitting chemical and electrical signals along their connections. Large language models are networks of millions or billions of digital neurons, implementing functions that read the output of other functions in complex networks. The failure to see how meaning would arise from such mechanics has led many cognitive scientists and philosophers to various forms of dualism -- and many artificial intelligence researchers to dismiss large language models as stochastic parrots or jpeg-like compressions of text corpora. We show that human-like representations arise in large language models. Specifically, the larger neural language models get, the more their representations are structurally similar to neural response measurements from brain imaging.