Arden
Abstract:Remote sensing change detection aims to perceive changes occurring on the Earth's surface from remote sensing data in different periods, and feed these changes back to humans. However, most existing methods only focus on detecting change regions, lacking the ability to interact with users to identify changes that the users expect. In this paper, we introduce a new task named Change Detection Question Answering and Grounding (CDQAG), which extends the traditional change detection task by providing interpretable textual answers and intuitive visual evidence. To this end, we construct the first CDQAG benchmark dataset, termed QAG-360K, comprising over 360K triplets of questions, textual answers, and corresponding high-quality visual masks. It encompasses 10 essential land-cover categories and 8 comprehensive question types, which provides a large-scale and diverse dataset for remote sensing applications. Based on this, we present VisTA, a simple yet effective baseline method that unifies the tasks of question answering and grounding by delivering both visual and textual answers. Our method achieves state-of-the-art results on both the classic CDVQA and the proposed CDQAG datasets. Extensive qualitative and quantitative experimental results provide useful insights for the development of better CDQAG models, and we hope that our work can inspire further research in this important yet underexplored direction. The proposed benchmark dataset and method are available at https://github.com/like413/VisTA.
Abstract:We propose GE2E-KWS -- a generalized end-to-end training and evaluation framework for customized keyword spotting. Specifically, enrollment utterances are separated and grouped by keywords from the training batch and their embedding centroids are compared to all other test utterance embeddings to compute the loss. This simulates runtime enrollment and verification stages, and improves convergence stability and training speed by optimizing matrix operations compared to SOTA triplet loss approaches. To benchmark different models reliably, we propose an evaluation process that mimics the production environment and compute metrics that directly measure keyword matching accuracy. Trained with GE2E loss, our 419KB quantized conformer model beats a 7.5GB ASR encoder by 23.6% relative AUC, and beats a same size triplet loss model by 60.7% AUC. Our KWS models are natively streamable with low memory footprints, and designed to continuously run on-device with no retraining needed for new keywords (zero-shot).
Abstract:Recent breakthroughs in preference alignment have significantly improved Large Language Models' ability to generate texts that align with human preferences and values. However, current alignment metrics typically emphasize the post-hoc overall improvement, while overlooking a critical aspect: regression, which refers to the backsliding on previously correctly-handled data after updates. This potential pitfall may arise from excessive fine-tuning on already well-aligned data, which subsequently leads to over-alignment and degeneration. To address this challenge, we propose FlipGuard, a constrained optimization approach to detect and mitigate update regression with focal attention. Specifically, FlipGuard identifies performance degradation using a customized reward characterization and strategically enforces a constraint to encourage conditional congruence with the pre-aligned model during training. Comprehensive experiments demonstrate that FlipGuard effectively alleviates update regression while demonstrating excellent overall performance, with the added benefit of knowledge preservation while aligning preferences.
Abstract:The increasing capability and widespread usage of large language models (LLMs) highlight the desirability of automatic detection of LLM-generated text. Zero-shot detectors, due to their training-free nature, have received considerable attention and notable success. In this paper, we identify a new feature, token cohesiveness, that is useful for zero-shot detection, and we demonstrate that LLM-generated text tends to exhibit higher token cohesiveness than human-written text. Based on this observation, we devise TOCSIN, a generic dual-channel detection paradigm that uses token cohesiveness as a plug-and-play module to improve existing zero-shot detectors. To calculate token cohesiveness, TOCSIN only requires a few rounds of random token deletion and semantic difference measurement, making it particularly suitable for a practical black-box setting where the source model used for generation is not accessible. Extensive experiments with four state-of-the-art base detectors on various datasets, source models, and evaluation settings demonstrate the effectiveness and generality of the proposed approach. Code available at: \url{https://github.com/Shixuan-Ma/TOCSIN}.
Abstract:The keyword spotting (KWS) problem requires large amounts of real speech training data to achieve high accuracy across diverse populations. Utilizing large amounts of text-to-speech (TTS) synthesized data can reduce the cost and time associated with KWS development. However, TTS data may contain artifacts not present in real speech, which the KWS model can exploit (overfit), leading to degraded accuracy on real speech. To address this issue, we propose applying an adversarial training method to prevent the KWS model from learning TTS-specific features when trained on large amounts of TTS data. Experimental results demonstrate that KWS model accuracy on real speech data can be improved by up to 12% when adversarial loss is used in addition to the original KWS loss. Surprisingly, we also observed that the adversarial setup improves accuracy by up to 8%, even when trained solely on TTS and real negative speech data, without any real positive examples.
Abstract:Large language models (LLMs) require model editing to efficiently update specific knowledge within them and avoid factual errors. Most model editing methods are solely designed for single-time use and lead to a significant forgetting effect after sequential edits over time, referred to as lifelong editing. Current approaches manage sequential edits by freezing original parameters and allocating new adapters for each knowledge modification. However, these methods lack robustness to minor input variations. To address this challenge, we propose ELDER, \textbf{E}nhancing \textbf{L}ifelong mo\textbf{D}el \textbf{E}diting with mixtu\textbf{R}e of Low-Rank Adapter (LoRA). ELDER is an adaptive approach that integrates multiple LoRAs through a router network. It learns to create a continuous and smooth association between data and adapters, thereby enhancing robustness and generalization to semantically equivalent inputs. Additionally, we introduce a novel loss to help learn associations between adapter allocations and edit semantics. A deferral mechanism is also proposed to retain the original LLM capabilities post-edit. Extensive experiments on GPT-2 XL and LLaMA2-7B demonstrate that ELDER effectively edits models in the lifelong setting and exhibits strong scalability, while retaining LLM's general abilities on downstream tasks.
Abstract:This paper explores the use of TTS synthesized training data for KWS (keyword spotting) task while minimizing development cost and time. Keyword spotting models require a huge amount of training data to be accurate, and obtaining such training data can be costly. In the current state of the art, TTS models can generate large amounts of natural-sounding data, which can help reducing cost and time for KWS model development. Still, TTS generated data can be lacking diversity compared to real data. To pursue maximizing KWS model accuracy under the constraint of limited resources and current TTS capability, we explored various strategies to mix TTS data and real human speech data, with a focus on minimizing real data use and maximizing diversity of TTS output. Our experimental results indicate that relatively small amounts of real audio data with speaker diversity (100 speakers, 2k utterances) and large amounts of TTS synthesized data can achieve reasonably high accuracy (within 3x error rate of baseline), compared to the baseline (trained with 3.8M real positive utterances).
Abstract:One of the challenges in developing a high quality custom keyword spotting (KWS) model is the lengthy and expensive process of collecting training data covering a wide range of languages, phrases and speaking styles. We introduce Synth4Kws - a framework to leverage Text to Speech (TTS) synthesized data for custom KWS in different resource settings. With no real data, we found increasing TTS phrase diversity and utterance sampling monotonically improves model performance, as evaluated by EER and AUC metrics over 11k utterances of the speech command dataset. In low resource settings, with 50k real utterances as a baseline, we found using optimal amounts of TTS data can improve EER by 30.1% and AUC by 46.7%. Furthermore, we mix TTS data with varying amounts of real data and interpolate the real data needed to achieve various quality targets. Our experiments are based on English and single word utterances but the findings generalize to i18n languages and other keyword types.
Abstract:This paper focuses on jailbreaking attacks against large language models (LLMs), eliciting them to generate objectionable content in response to harmful user queries. Unlike previous LLM-jailbreaks that directly orient to LLMs, our approach begins by constructing a multimodal large language model (MLLM) through the incorporation of a visual module into the target LLM. Subsequently, we conduct an efficient MLLM-jailbreak to generate jailbreaking embeddings embJS. Finally, we convert the embJS into text space to facilitate the jailbreaking of the target LLM. Compared to direct LLM-jailbreaking, our approach is more efficient, as MLLMs are more vulnerable to jailbreaking than pure LLM. Additionally, to improve the attack success rate (ASR) of jailbreaking, we propose an image-text semantic matching scheme to identify a suitable initial input. Extensive experiments demonstrate that our approach surpasses current state-of-the-art methods in terms of both efficiency and effectiveness. Moreover, our approach exhibits superior cross-class jailbreaking capabilities.
Abstract:In-context learning (ICL), which promotes inference with several demonstrations, has become a widespread paradigm to stimulate LLM capabilities for downstream tasks. Due to context length constraints, it cannot be further improved in spite of more training data, and general features directly from LLMs in ICL are not adaptive to the specific downstream task. In this paper, we propose a feature-adaptive and data-scalable in-context learning framework (FADS-ICL), which can leverage task-adaptive features to promote inference on the downstream task, with the supervision of beyond-context samples. Specifically, it first extracts general features of beyond-context samples via the LLM with ICL input form one by one, and introduces a task-specific modulator to perform feature refinement and prediction after fitting a specific downstream task. We conduct extensive experiments on FADS-ICL under varying data settings (4$\sim$128 shots) and LLM scale (0.8$\sim$70B) settings. Experimental results show that FADS-ICL consistently outperforms previous state-of-the-art methods by a significant margin under all settings, verifying the effectiveness and superiority of FADS-ICL. For example, under the 1.5B and 32 shots setting, FADS-ICL can achieve \textbf{+14.3} average accuracy from feature adaptation over vanilla ICL on 10 datasets, with \textbf{+6.2} average accuracy over the previous state-of-the-art method, and the performance can further improve with increasing training data. Code and data are publicly available at \url{https://github.com/jiahaozhenbang/FADS-ICL}.