Abstract:We propose GE2E-KWS -- a generalized end-to-end training and evaluation framework for customized keyword spotting. Specifically, enrollment utterances are separated and grouped by keywords from the training batch and their embedding centroids are compared to all other test utterance embeddings to compute the loss. This simulates runtime enrollment and verification stages, and improves convergence stability and training speed by optimizing matrix operations compared to SOTA triplet loss approaches. To benchmark different models reliably, we propose an evaluation process that mimics the production environment and compute metrics that directly measure keyword matching accuracy. Trained with GE2E loss, our 419KB quantized conformer model beats a 7.5GB ASR encoder by 23.6% relative AUC, and beats a same size triplet loss model by 60.7% AUC. Our KWS models are natively streamable with low memory footprints, and designed to continuously run on-device with no retraining needed for new keywords (zero-shot).
Abstract:The keyword spotting (KWS) problem requires large amounts of real speech training data to achieve high accuracy across diverse populations. Utilizing large amounts of text-to-speech (TTS) synthesized data can reduce the cost and time associated with KWS development. However, TTS data may contain artifacts not present in real speech, which the KWS model can exploit (overfit), leading to degraded accuracy on real speech. To address this issue, we propose applying an adversarial training method to prevent the KWS model from learning TTS-specific features when trained on large amounts of TTS data. Experimental results demonstrate that KWS model accuracy on real speech data can be improved by up to 12% when adversarial loss is used in addition to the original KWS loss. Surprisingly, we also observed that the adversarial setup improves accuracy by up to 8%, even when trained solely on TTS and real negative speech data, without any real positive examples.
Abstract:This paper explores the use of TTS synthesized training data for KWS (keyword spotting) task while minimizing development cost and time. Keyword spotting models require a huge amount of training data to be accurate, and obtaining such training data can be costly. In the current state of the art, TTS models can generate large amounts of natural-sounding data, which can help reducing cost and time for KWS model development. Still, TTS generated data can be lacking diversity compared to real data. To pursue maximizing KWS model accuracy under the constraint of limited resources and current TTS capability, we explored various strategies to mix TTS data and real human speech data, with a focus on minimizing real data use and maximizing diversity of TTS output. Our experimental results indicate that relatively small amounts of real audio data with speaker diversity (100 speakers, 2k utterances) and large amounts of TTS synthesized data can achieve reasonably high accuracy (within 3x error rate of baseline), compared to the baseline (trained with 3.8M real positive utterances).
Abstract:One of the challenges in developing a high quality custom keyword spotting (KWS) model is the lengthy and expensive process of collecting training data covering a wide range of languages, phrases and speaking styles. We introduce Synth4Kws - a framework to leverage Text to Speech (TTS) synthesized data for custom KWS in different resource settings. With no real data, we found increasing TTS phrase diversity and utterance sampling monotonically improves model performance, as evaluated by EER and AUC metrics over 11k utterances of the speech command dataset. In low resource settings, with 50k real utterances as a baseline, we found using optimal amounts of TTS data can improve EER by 30.1% and AUC by 46.7%. Furthermore, we mix TTS data with varying amounts of real data and interpolate the real data needed to achieve various quality targets. Our experiments are based on English and single word utterances but the findings generalize to i18n languages and other keyword types.