Jake
Abstract:As the application of large language models in various fields continues to expand, materials science also ushers in opportunities for AI-driven innovation. The traditional way of relying on manual search for materials science-related information is now using artificial intelligence technology as an auxiliary tool to improve the efficiency of materials science research. To accelerate researchers' knowledge acquisition and intelligent decision-making support in materials science research, this paper proposes a large language model Polymetis model for a variety of materials fields, aiming to provide highly professional knowledge answers in the field of materials, covering energy materials, functional materials, alloy materials, physical chemistry, biology, and other material directions. The model uses a dataset of about 2 million material knowledge instructions, and in the process of building the dataset, we developed the Intelligent Extraction Large Model (IELM), which is specially used to extract and form structured knowledge from scientific texts, avoiding a large number of costs that need to be manually annotated, and improving efficiency. We inject this data into the GLM4-9B model for learning to enhance its inference capabilities in a variety of material domains. In addition, we have introduced enhanced prompt strategies to ensure that the answers to the model are more organized and comprehensive, providing efficient and comprehensive intelligent support for the diverse needs of materials science exploration, and promoting the development of material science.
Abstract:We introduce FinDVer, a comprehensive benchmark specifically designed to evaluate the explainable claim verification capabilities of LLMs in the context of understanding and analyzing long, hybrid-content financial documents. FinDVer contains 2,400 expert-annotated examples, divided into three subsets: information extraction, numerical reasoning, and knowledge-intensive reasoning, each addressing common scenarios encountered in real-world financial contexts. We assess a broad spectrum of LLMs under long-context and RAG settings. Our results show that even the current best-performing system, GPT-4o, still lags behind human experts. We further provide in-depth analysis on long-context and RAG setting, Chain-of-Thought reasoning, and model reasoning errors, offering insights to drive future advancements. We believe that FinDVer can serve as a valuable benchmark for evaluating LLMs in claim verification over complex, expert-domain documents.
Abstract:Large language models are pre-trained on uncurated text datasets consisting of trillions of tokens scraped from the Web. Prior work has shown that: (1) web-scraped pre-training datasets can be practically poisoned by malicious actors; and (2) adversaries can compromise language models after poisoning fine-tuning datasets. Our work evaluates for the first time whether language models can also be compromised during pre-training, with a focus on the persistence of pre-training attacks after models are fine-tuned as helpful and harmless chatbots (i.e., after SFT and DPO). We pre-train a series of LLMs from scratch to measure the impact of a potential poisoning adversary under four different attack objectives (denial-of-service, belief manipulation, jailbreaking, and prompt stealing), and across a wide range of model sizes (from 600M to 7B). Our main result is that poisoning only 0.1% of a model's pre-training dataset is sufficient for three out of four attacks to measurably persist through post-training. Moreover, simple attacks like denial-of-service persist through post-training with a poisoning rate of only 0.001%.
Abstract:Recent advancements in building domain-specific large language models (LLMs) have shown remarkable success, especially in tasks requiring reasoning abilities like logical inference over complex relationships and multi-step problem solving. However, creating a powerful all-in-one LLM remains challenging due to the need for proprietary data and vast computational resources. As a resource-friendly alternative, we explore the potential of merging multiple expert models into a single LLM. Existing studies on model merging mainly focus on generalist LLMs instead of domain experts, or the LLMs under the same architecture and size. In this work, we propose an unconstrained model merging framework that accommodates both homogeneous and heterogeneous model architectures with a focus on reasoning tasks. A fine-grained layer-wise weight merging strategy is designed for homogeneous models merging, while heterogeneous model merging is built upon the probabilistic distribution knowledge derived from instruction-response fine-tuning data. Across 7 benchmarks and 9 reasoning-optimized LLMs, we reveal key findings that combinatorial reasoning emerges from merging which surpasses simple additive effects. We propose that unconstrained model merging could serve as a foundation for decentralized LLMs, marking a notable progression from the existing centralized LLM framework. This evolution could enhance wider participation and stimulate additional advancement in the field of artificial intelligence, effectively addressing the constraints posed by centralized models.
Abstract:Chess has long been a testbed for AI's quest to match human intelligence, and in recent years, chess AI systems have surpassed the strongest humans at the game. However, these systems are not human-aligned; they are unable to match the skill levels of all human partners or model human-like behaviors beyond piece movement. In this paper, we introduce Allie, a chess-playing AI designed to bridge the gap between artificial and human intelligence in this classic game. Allie is trained on log sequences of real chess games to model the behaviors of human chess players across the skill spectrum, including non-move behaviors such as pondering times and resignations In offline evaluations, we find that Allie exhibits humanlike behavior: it outperforms the existing state-of-the-art in human chess move prediction and "ponders" at critical positions. The model learns to reliably assign reward at each game state, which can be used at inference as a reward function in a novel time-adaptive Monte-Carlo tree search (MCTS) procedure, where the amount of search depends on how long humans would think in the same positions. Adaptive search enables remarkable skill calibration; in a large-scale online evaluation against players with ratings from 1000 to 2600 Elo, our adaptive search method leads to a skill gap of only 49 Elo on average, substantially outperforming search-free and standard MCTS baselines. Against grandmaster-level (2500 Elo) opponents, Allie with adaptive search exhibits the strength of a fellow grandmaster, all while learning exclusively from humans.
Abstract:Despite much progress in large 3D datasets there are currently few interactive 3D object datasets, and their scale is limited due to the manual effort required in their construction. We introduce the static to openable (S2O) task which creates interactive articulated 3D objects from static counterparts through openable part detection, motion prediction, and interior geometry completion. We formulate a unified framework to tackle this task, and curate a challenging dataset of openable 3D objects that serves as a test bed for systematic evaluation. Our experiments benchmark methods from prior work and simple yet effective heuristics for the S2O task. We find that turning static 3D objects into interactively openable counterparts is possible but that all methods struggle to generalize to realistic settings of the task, and we highlight promising future work directions.
Abstract:Text generation has a fundamental limitation almost by definition: there is no taking back tokens that have been generated, even when they are clearly problematic. In the context of language model safety, when a partial unsafe generation is produced, language models by their nature tend to happily keep on generating similarly unsafe additional text. This is in fact how safety alignment of frontier models gets circumvented in the wild, despite great efforts in improving their safety. Deviating from the paradigm of approaching safety alignment as prevention (decreasing the probability of harmful responses), we propose backtracking, a technique that allows language models to "undo" and recover from their own unsafe generation through the introduction of a special [RESET] token. Our method can be incorporated into either SFT or DPO training to optimize helpfulness and harmlessness. We show that models trained to backtrack are consistently safer than baseline models: backtracking Llama-3-8B is four times more safe than the baseline model (6.1\% $\to$ 1.5\%) in our evaluations without regression in helpfulness. Our method additionally provides protection against four adversarial attacks including an adaptive attack, despite not being trained to do so.
Abstract:Due to high accuracy, BERT-like models have been widely adopted by discriminative text mining and web searching. However, large BERT-like models suffer from inefficient online inference, as they face the following two problems on GPUs. First, they rely on the large model depth to achieve high accuracy, which linearly increases the sequential computation on GPUs. Second, stochastic and dynamic online workloads cause extra costs. In this paper, we present Academus for low-latency online inference of BERT-like models. At the core of Academus is the novel student parallelism, which adopts boosting ensemble and stacking distillation to distill the original deep model into an equivalent group of parallel and shallow student models. This enables Academus to achieve the lower model depth (e.g., two layers) than baselines and consequently the lowest inference latency without affecting the accuracy.For occasional workload bursts, it can temporarily decrease the number of students with minimal accuracy loss to improve throughput. Additionally, it employs specialized system designs for student parallelism to better handle stochastic online workloads. We conduct comprehensive experiments to verify the effectiveness. The results show that Academus outperforms the baselines by 4.1X~1.6X in latency without compromising accuracy, and achieves up to 22.27X higher throughput for workload bursts.
Abstract:We study Neural Foley, the automatic generation of high-quality sound effects synchronizing with videos, enabling an immersive audio-visual experience. Despite its wide range of applications, existing approaches encounter limitations when it comes to simultaneously synthesizing high-quality and video-aligned (i.e.,, semantic relevant and temporal synchronized) sounds. To overcome these limitations, we propose FoleyCrafter, a novel framework that leverages a pre-trained text-to-audio model to ensure high-quality audio generation. FoleyCrafter comprises two key components: the semantic adapter for semantic alignment and the temporal controller for precise audio-video synchronization. The semantic adapter utilizes parallel cross-attention layers to condition audio generation on video features, producing realistic sound effects that are semantically relevant to the visual content. Meanwhile, the temporal controller incorporates an onset detector and a timestampbased adapter to achieve precise audio-video alignment. One notable advantage of FoleyCrafter is its compatibility with text prompts, enabling the use of text descriptions to achieve controllable and diverse video-to-audio generation according to user intents. We conduct extensive quantitative and qualitative experiments on standard benchmarks to verify the effectiveness of FoleyCrafter. Models and codes are available at https://github.com/open-mmlab/FoleyCrafter.
Abstract:We introduce Duoduo CLIP, a model for 3D representation learning that learns shape encodings from multi-view images instead of point-clouds. The choice of multi-view images allows us to leverage 2D priors from off-the-shelf CLIP models to facilitate fine-tuning with 3D data. Our approach not only shows better generalization compared to existing point cloud methods, but also reduces GPU requirements and training time. In addition, we modify the model with cross-view attention to leverage information across multiple frames of the object which further boosts performance. Compared to the current SOTA point cloud method that requires 480 A100 hours to train 1 billion model parameters we only require 57 A5000 hours and 87 million parameters. Multi-view images also provide more flexibility in use cases compared to point clouds. This includes being able to encode objects with a variable number of images, with better performance when more views are used. This is in contrast to point cloud based methods, where an entire scan or model of an object is required. We showcase this flexibility with object retrieval from images of real-world objects. Our model also achieves better performance in more fine-grained text to shape retrieval, demonstrating better text-and-shape alignment than point cloud based models.