Abstract:Large Language Models (LLMs) have demonstrated strong performance across various reasoning tasks, yet building a single model that consistently excels across all domains remains challenging. This paper addresses this problem by exploring strategies to integrate multiple domain-specialized models into an efficient pivot model.We propose two fusion strategies to combine the strengths of multiple LLMs: (1) a pairwise, multi-step fusion approach that sequentially distills each source model into the pivot model, followed by a weight merging step to integrate the distilled models into the final model. This method achieves strong performance but requires substantial training effort; and (2) a unified fusion approach that aggregates all source models' outputs simultaneously.To improve the fusion process, we introduce a novel Rate-Skewness Adaptive Fusion (RSAF) technique, which dynamically adjusts top-K ratios during parameter merging for enhanced flexibility and stability.Furthermore, we propose an uncertainty-based weighting method for the unified approach, which dynamically balances the contributions of source models and outperforms other logits/distribution ensemble methods.We achieved accuracy improvements of 9.27%, 8.80%, and 8.89% on the GSM8K, MATH, and HumanEval tasks, respectively.
Abstract:Recent studies have raised significant concerns regarding the vulnerability of Large Vision Language Models (LVLMs) to maliciously injected or perturbed input images, which can mislead their responses. Existing defense methods show that such vision attacks are sensitive to image modifications especially cropping, using majority voting across responses of modified images as corrected responses. However, these modifications often result in partial images and distort the semantics, which reduces response quality on clean images after voting. Instead of directly using responses from partial images for voting, we investigate using them to supervise the LVLM's responses to the original images. We propose a black-box, training-free method called DPS (Defense through Partial-Perception Supervision). In this approach, the model is prompted using the responses generated by a model that perceives only a partial image. With DPS, the model can adjust its response based on partial image understanding when under attack, while confidently maintaining its original response for clean input. Our findings show that the weak model can supervise the strong model: when faced with an attacked input, the strong model becomes less confident and adjusts its response based on the weak model's partial understanding, effectively defending against the attack. With clean input, it confidently maintains its original response. Empirical experiments show our method outperforms the baseline, cutting the average attack success rate by 76.3% across six datasets on three popular models.
Abstract:Fault diagnosis technology supports the healthy operation of mechanical equipment. However, the variations conditions during the operation of mechanical equipment lead to significant disparities in data distribution, posing challenges to fault diagnosis. Furthermore, when deploying applications, traditional methods often encounter issues such as latency and data security. Therefore, conducting fault diagnosis and deploying application methods under cross-operating conditions holds significant value. This paper proposes a domain adaptation-based lightweight fault diagnosis framework for edge computing scenarios. Incorporating the local maximum mean discrepancy into knowledge transfer aligns the feature distributions of different domains in a high-dimensional feature space, to discover a common feature space across domains. The acquired fault diagnosis expertise from the cloud-model is transferred to the lightweight edge-model using adaptation knowledge transfer methods. While ensuring real-time diagnostic capabilities, accurate fault diagnosis is achieved across working conditions. We conducted validation experiments on the NVIDIA Jetson Xavier NX kit. In terms of diagnostic performance, the proposed method significantly improved diagnostic accuracy, with average increases of 34.44% and 17.33% compared to the comparison method, respectively. Regarding lightweight effectiveness, proposed method achieved an average inference speed increase of 80.47%. Additionally, compared to the cloud-model, the parameter count of the edge-model decreased by 96.37%, while the Flops decreased by 83.08%.
Abstract:Recent advancements in building domain-specific large language models (LLMs) have shown remarkable success, especially in tasks requiring reasoning abilities like logical inference over complex relationships and multi-step problem solving. However, creating a powerful all-in-one LLM remains challenging due to the need for proprietary data and vast computational resources. As a resource-friendly alternative, we explore the potential of merging multiple expert models into a single LLM. Existing studies on model merging mainly focus on generalist LLMs instead of domain experts, or the LLMs under the same architecture and size. In this work, we propose an unconstrained model merging framework that accommodates both homogeneous and heterogeneous model architectures with a focus on reasoning tasks. A fine-grained layer-wise weight merging strategy is designed for homogeneous models merging, while heterogeneous model merging is built upon the probabilistic distribution knowledge derived from instruction-response fine-tuning data. Across 7 benchmarks and 9 reasoning-optimized LLMs, we reveal key findings that combinatorial reasoning emerges from merging which surpasses simple additive effects. We propose that unconstrained model merging could serve as a foundation for decentralized LLMs, marking a notable progression from the existing centralized LLM framework. This evolution could enhance wider participation and stimulate additional advancement in the field of artificial intelligence, effectively addressing the constraints posed by centralized models.
Abstract:Logs are ubiquitous digital footprints, playing an indispensable role in system diagnostics, security analysis, and performance optimization. The extraction of actionable insights from logs is critically dependent on the log parsing process, which converts raw logs into structured formats for downstream analysis. Yet, the complexities of contemporary systems and the dynamic nature of logs pose significant challenges to existing automatic parsing techniques. The emergence of Large Language Models (LLM) offers new horizons. With their expansive knowledge and contextual prowess, LLMs have been transformative across diverse applications. Building on this, we introduce LogParser-LLM, a novel log parser integrated with LLM capabilities. This union seamlessly blends semantic insights with statistical nuances, obviating the need for hyper-parameter tuning and labeled training data, while ensuring rapid adaptability through online parsing. Further deepening our exploration, we address the intricate challenge of parsing granularity, proposing a new metric and integrating human interactions to allow users to calibrate granularity to their specific needs. Our method's efficacy is empirically demonstrated through evaluations on the Loghub-2k and the large-scale LogPub benchmark. In evaluations on the LogPub benchmark, involving an average of 3.6 million logs per dataset across 14 datasets, our LogParser-LLM requires only 272.5 LLM invocations on average, achieving a 90.6% F1 score for grouping accuracy and an 81.1% for parsing accuracy. These results demonstrate the method's high efficiency and accuracy, outperforming current state-of-the-art log parsers, including pattern-based, neural network-based, and existing LLM-enhanced approaches.
Abstract:With the advancements in denoising diffusion probabilistic models (DDPMs), image inpainting has significantly evolved from merely filling information based on nearby regions to generating content conditioned on various prompts such as text, exemplar images, and sketches. However, existing methods, such as model fine-tuning and simple concatenation of latent vectors, often result in generation failures due to overfitting and inconsistency between the inpainted region and the background. In this paper, we argue that the current large diffusion models are sufficiently powerful to generate realistic images without further tuning. Hence, we introduce PILOT (in\textbf{P}ainting v\textbf{I}a \textbf{L}atent \textbf{O}p\textbf{T}imization), an optimization approach grounded on a novel \textit{semantic centralization} and \textit{background preservation loss}. Our method searches latent spaces capable of generating inpainted regions that exhibit high fidelity to user-provided prompts while maintaining coherence with the background. Furthermore, we propose a strategy to balance optimization expense and image quality, significantly enhancing generation efficiency. Our method seamlessly integrates with any pre-trained model, including ControlNet and DreamBooth, making it suitable for deployment in multi-modal editing tools. Our qualitative and quantitative evaluations demonstrate that PILOT outperforms existing approaches by generating more coherent, diverse, and faithful inpainted regions in response to provided prompts.
Abstract:Deep Neural Networks (DNNs) have been widely used in many areas such as autonomous driving and face recognition. However, DNN model is fragile to backdoor attack. A backdoor in the DNN model can be activated by a poisoned input with trigger and leads to wrong prediction, which causes serious security issues in applications. It is challenging for current defenses to eliminate the backdoor effectively with limited computing resources, especially when the sizes and numbers of the triggers are variable as in the physical world. We propose an efficient backdoor defense based on evolutionary trigger detection and lightweight model repair. In the first phase of our method, CAM-focus Evolutionary Trigger Filter (CETF) is proposed for trigger detection. CETF is an effective sample-preprocessing based method with the evolutionary algorithm, and our experimental results show that CETF not only distinguishes the images with triggers accurately from the clean images, but also can be widely used in practice for its simplicity and stability in different backdoor attack situations. In the second phase of our method, we leverage several lightweight unlearning methods with the trigger detected by CETF for model repair, which also constructively demonstrate the underlying correlation of the backdoor with Batch Normalization layers. Source code will be published after accepted.
Abstract:Deep learning methods have access to be employed for solving physical systems governed by parametric partial differential equations (PDEs) due to massive scientific data. It has been refined to operator learning that focuses on learning non-linear mapping between infinite-dimensional function spaces, offering interface from observations to solutions. However, state-of-the-art neural operators are limited to constant and uniform discretization, thereby leading to deficiency in generalization on arbitrary discretization schemes for computational domain. In this work, we propose a novel operator learning algorithm, referred to as Dynamic Gaussian Graph Operator (DGGO) that expands neural operators to learning parametric PDEs in arbitrary discrete mechanics problems. The Dynamic Gaussian Graph (DGG) kernel learns to map the observation vectors defined in general Euclidean space to metric vectors defined in high-dimensional uniform metric space. The DGG integral kernel is parameterized by Gaussian kernel weighted Riemann sum approximating and using dynamic message passing graph to depict the interrelation within the integral term. Fourier Neural Operator is selected to localize the metric vectors on spatial and frequency domains. Metric vectors are regarded as located on latent uniform domain, wherein spatial and spectral transformation offer highly regular constraints on solution space. The efficiency and robustness of DGGO are validated by applying it to solve numerical arbitrary discrete mechanics problems in comparison with mainstream neural operators. Ablation experiments are implemented to demonstrate the effectiveness of spatial transformation in the DGG kernel. The proposed method is utilized to forecast stress field of hyper-elastic material with geometrically variable void as engineering application.
Abstract:Machine learning is employed for solving physical systems governed by general nonlinear partial differential equations (PDEs). However, complex multi-physics systems such as acoustic-structure coupling are often described by a series of PDEs that incorporate variable physical quantities, which are referred to as parametric systems. There are lack of strategies for solving parametric systems governed by PDEs that involve explicit and implicit quantities. In this paper, a deep learning-based Multi Physics-Informed PointNet (MPIPN) is proposed for solving parametric acoustic-structure systems. First, the MPIPN induces an enhanced point-cloud architecture that encompasses explicit physical quantities and geometric features of computational domains. Then, the MPIPN extracts local and global features of the reconstructed point-cloud as parts of solving criteria of parametric systems, respectively. Besides, implicit physical quantities are embedded by encoding techniques as another part of solving criteria. Finally, all solving criteria that characterize parametric systems are amalgamated to form distinctive sequences as the input of the MPIPN, whose outputs are solutions of systems. The proposed framework is trained by adaptive physics-informed loss functions for corresponding computational domains. The framework is generalized to deal with new parametric conditions of systems. The effectiveness of the MPIPN is validated by applying it to solve steady parametric acoustic-structure coupling systems governed by the Helmholtz equations. An ablation experiment has been implemented to demonstrate the efficacy of physics-informed impact with a minority of supervised data. The proposed method yields reasonable precision across all computational domains under constant parametric conditions and changeable combinations of parametric conditions for acoustic-structure systems.
Abstract:Guided image synthesis methods, like SDEdit based on the diffusion model, excel at creating realistic images from user inputs such as stroke paintings. However, existing efforts mainly focus on image quality, often overlooking a key point: the diffusion model represents a data distribution, not individual images. This introduces a low but critical chance of generating images that contradict user intentions, raising ethical concerns. For example, a user inputting a stroke painting with female characteristics might, with some probability, get male faces from SDEdit. To expose this potential vulnerability, we aim to build an adversarial attack forcing SDEdit to generate a specific data distribution aligned with a specified attribute (e.g., female), without changing the input's attribute characteristics. We propose the Targeted Attribute Generative Attack (TAGA), using an attribute-aware objective function and optimizing the adversarial noise added to the input stroke painting. Empirical studies reveal that traditional adversarial noise struggles with TAGA, while natural perturbations like exposure and motion blur easily alter generated images' attributes. To execute effective attacks, we introduce FoolSDEdit: We design a joint adversarial exposure and blur attack, adding exposure and motion blur to the stroke painting and optimizing them together. We optimize the execution strategy of various perturbations, framing it as a network architecture search problem. We create the SuperPert, a graph representing diverse execution strategies for different perturbations. After training, we obtain the optimized execution strategy for effective TAGA against SDEdit. Comprehensive experiments on two datasets show our method compelling SDEdit to generate a targeted attribute-aware data distribution, significantly outperforming baselines.