Linda
Abstract:Long context large language models (LLMs) pose significant challenges for efficient serving due to the large memory footprint and high access overhead of KV cache. Retrieval-based KV cache reduction methods can mitigate these challenges, typically by offloading the complete KV cache to CPU and retrieving necessary tokens on demand during inference. However, these methods still suffer from unsatisfactory accuracy degradation and extra retrieval overhead. To address these limitations, this paper proposes A$^2$ATS, a novel retrieval-based KV cache reduction method. A$^2$ATS aims to obtain an accurate approximation of attention scores by applying the vector quantization technique to key states, thereby enabling efficient and precise retrieval of the top-K tokens. First, we propose Windowed Rotary Position Embedding, which decouples the positional dependency from query and key states after position embedding. Then, we propose query-aware vector quantization that optimizes the objective of attention score approximation directly. Finally, we design the heterogeneous inference architecture for KV cache offloading, enabling long context serving with larger batch sizes. Experimental results demonstrate that A$^2$ATS can achieve a lower performance degradation with similar or lower overhead compared to existing methods, thereby increasing long context serving throughput by up to $2.7 \times$.
Abstract:The training of controllable text-to-video (T2V) models relies heavily on the alignment between videos and captions, yet little existing research connects video caption evaluation with T2V generation assessment. This paper introduces VidCapBench, a video caption evaluation scheme specifically designed for T2V generation, agnostic to any particular caption format. VidCapBench employs a data annotation pipeline, combining expert model labeling and human refinement, to associate each collected video with key information spanning video aesthetics, content, motion, and physical laws. VidCapBench then partitions these key information attributes into automatically assessable and manually assessable subsets, catering to both the rapid evaluation needs of agile development and the accuracy requirements of thorough validation. By evaluating numerous state-of-the-art captioning models, we demonstrate the superior stability and comprehensiveness of VidCapBench compared to existing video captioning evaluation approaches. Verification with off-the-shelf T2V models reveals a significant positive correlation between scores on VidCapBench and the T2V quality evaluation metrics, indicating that VidCapBench can provide valuable guidance for training T2V models. The project is available at https://github.com/VidCapBench/VidCapBench.
Abstract:Claim verification is the task of determining whether a claim is supported or refuted by evidence. Self-improvement methods, where reasoning chains are generated and those leading to correct results are selected for training, have succeeded in tasks like mathematical problem solving. However, in claim verification, this approach struggles. Low-quality reasoning chains may falsely match binary truth labels, introducing faulty reasoning into the self-improvement process and ultimately degrading performance. To address this, we propose STRIVE: Structured Reasoning for Self-Improved Verification. Our method introduces a structured reasoning design with Claim Decomposition, Entity Analysis, and Evidence Grounding Verification. These components improve reasoning quality, reduce errors, and provide additional supervision signals for self-improvement. STRIVE begins with a warm-up phase, where the base model is fine-tuned on a small number of annotated examples to learn the structured reasoning design. It is then applied to generate reasoning chains for all training examples, selecting only those that are correct and structurally sound for subsequent self-improvement training. We demonstrate that STRIVE achieves significant improvements over baseline models, with a 31.4% performance gain over the base model and 20.7% over Chain of Thought on the HOVER datasets, highlighting its effectiveness.
Abstract:Generative tasks about molecules, including but not limited to molecule generation, are crucial for drug discovery and material design, and have consistently attracted significant attention. In recent years, diffusion models have emerged as an impressive class of deep generative models, sparking extensive research and leading to numerous studies on their application to molecular generative tasks. Despite the proliferation of related work, there remains a notable lack of up-to-date and systematic surveys in this area. Particularly, due to the diversity of diffusion model formulations, molecular data modalities, and generative task types, the research landscape is challenging to navigate, hindering understanding and limiting the area's growth. To address this, this paper conducts a comprehensive survey of diffusion model-based molecular generative methods. We systematically review the research from the perspectives of methodological formulations, data modalities, and task types, offering a novel taxonomy. This survey aims to facilitate understanding and further flourishing development in this area. The relevant papers are summarized at: https://github.com/AzureLeon1/awesome-molecular-diffusion-models.
Abstract:Purpose: To develop and validate a novel image reconstruction technique using implicit neural representations (INR) for multi-view thick-slice acquisitions while reducing the scan time but maintaining high signal-to-noise ratio (SNR). Methods: We propose Rotating-view super-resolution (ROVER)-MRI, an unsupervised neural network-based algorithm designed to reconstruct MRI data from multi-view thick slices, effectively reducing scan time by 2-fold while maintaining fine anatomical details. We compare our method to both bicubic interpolation and the current state-of-the-art regularized least-squares super-resolution reconstruction (LS-SRR) technique. Validation is performed using ground-truth ex-vivo monkey brain data, and we demonstrate superior reconstruction quality across several in-vivo human datasets. Notably, we achieve the reconstruction of a whole human brain in-vivo T2-weighted image with an unprecedented 180{\mu}m isotropic spatial resolution, accomplished in just 17 minutes of scan time on a 7T MRI scanner. Results: ROVER-MRI outperformed LS-SRR method in terms of reconstruction quality with 22.4% lower relative error (RE) and 7.5% lower full-width half maximum (FWHM) indicating better preservation of fine structural details in nearly half the scan time. Conclusion: ROVER-MRI offers an efficient and robust approach for mesoscale MR imaging, enabling rapid, high-resolution whole-brain scans. Its versatility holds great promise for research applications requiring anatomical details and time-efficient imaging.
Abstract:Modern adaptive optimization methods, such as Adam and its variants, have emerged as the most widely used tools in deep learning over recent years. These algorithms offer automatic mechanisms for dynamically adjusting the update step based on estimates of gradient statistics. Compared to traditional algorithms like Stochastic Gradient Descent, these adaptive methods are typically more robust to model scale and hyperparameter tuning. However, the gradient statistics employed by these methods often do not leverage sufficient gradient covariance information, leading to suboptimal updates in certain directions of the parameter space and potentially slower convergence. In this work, we keep track of such covariance statistics in the form of a structured preconditioner matrix. Unlike other works, our approach does not apply direct approximations to estimate this matrix. We instead implement an invertible transformation that maps the preconditioner matrix into a new space where it becomes approximately diagonal. This enables a diagonal approximation of the preconditioner matrix in the transformed space, offering several computational advantages. Empirical results show that our approach can substantially enhance the convergence speed of modern adaptive optimizers. Notably, for large language models like LLaMA, we can achieve a speedup of 2x compared to the baseline Adam. Additionally, our method can be integrated with memory-efficient optimizers like Adafactor to manage computational overhead.
Abstract:Offline preference alignment for language models such as Direct Preference Optimization (DPO) is favored for its effectiveness and simplicity, eliminating the need for costly reinforcement learning. Various offline algorithms have been developed for different data settings, yet they lack a unified understanding. In this study, we introduce Pior-Informed Preference Alignment (PIPA), a unified, RL-free probabilistic framework that formulates language model preference alignment as a Maximum Likelihood Estimation (MLE) problem with prior constraints. This method effectively accommodates both paired and unpaired data, as well as answer and step-level annotations. We illustrate that DPO and KTO are special cases with different prior constraints within our framework. By integrating different types of prior information, we developed two variations of PIPA: PIPA-M and PIPA-N. Both algorithms demonstrate a $3\sim10\%$ performance enhancement on the GSM8K and MATH benchmarks across all configurations, achieving these gains without additional training or computational costs compared to existing algorithms.
Abstract:Hallucination has emerged as a significant barrier to the effective application of Large Language Models (LLMs). In this work, we introduce a novel Attention-Guided SElf-Reflection (AGSER) approach for zero-shot hallucination detection in LLMs. The AGSER method utilizes attention contributions to categorize the input query into attentive and non-attentive queries. Each query is then processed separately through the LLMs, allowing us to compute consistency scores between the generated responses and the original answer. The difference between the two consistency scores serves as a hallucination estimator. In addition to its efficacy in detecting hallucinations, AGSER notably reduces computational complexity, requiring only three passes through the LLM and utilizing two sets of tokens. We have conducted extensive experiments with four widely-used LLMs across three different hallucination benchmarks, demonstrating that our approach significantly outperforms existing methods in zero-shot hallucination detection.
Abstract:Multimodal large language models (MLLMs) enhance their perceptual capabilities by integrating visual and textual information. However, processing the massive number of visual tokens incurs a significant computational cost. Existing analysis of the MLLM attention mechanisms remains shallow, leading to coarse-grain token pruning strategies that fail to effectively balance speed and accuracy. In this paper, we conduct a comprehensive investigation of MLLM attention mechanisms with LLaVA. We find that numerous visual tokens and partial attention computations are redundant during the decoding process. Based on this insight, we propose Spatial-Temporal Visual Token Trimming ($\textbf{ST}^{3}$), a framework designed to accelerate MLLM inference without retraining. $\textbf{ST}^{3}$ consists of two primary components: 1) Progressive Visual Token Pruning (\textbf{PVTP}), which eliminates inattentive visual tokens across layers, and 2) Visual Token Annealing (\textbf{VTA}), which dynamically reduces the number of visual tokens in each layer as the generated tokens grow. Together, these techniques deliver around $\mathbf{2\times}$ faster inference with only about $\mathbf{30\%}$ KV cache memory compared to the original LLaVA, while maintaining consistent performance across various datasets. Crucially, $\textbf{ST}^{3}$ can be seamlessly integrated into existing pre-trained MLLMs, providing a plug-and-play solution for efficient inference.
Abstract:Click-Through Rate (CTR) prediction is essential in online advertising, where semantic information plays a pivotal role in shaping user decisions and enhancing CTR effectiveness. Capturing and modeling deep semantic information, such as a user's preference for "H\"aagen-Dazs' HEAVEN strawberry light ice cream" due to its health-conscious and premium attributes, is challenging. Traditional semantic modeling often overlooks these intricate details at the user and item levels. To bridge this gap, we introduce a novel approach that models deep semantic information end-to-end, leveraging the comprehensive world knowledge capabilities of Large Language Models (LLMs). Our proposed LLM-infused CTR prediction framework(Multi-level Deep Semantic Information Infused CTR model via Distillation, MSD) is designed to uncover deep semantic insights by utilizing LLMs to extract and distill critical information into a smaller, more efficient model, enabling seamless end-to-end training and inference. Importantly, our framework is carefully designed to balance efficiency and effectiveness, ensuring that the model not only achieves high performance but also operates with optimal resource utilization. Online A/B tests conducted on the Meituan sponsored-search system demonstrate that our method significantly outperforms baseline models in terms of Cost Per Mile (CPM) and CTR, validating its effectiveness, scalability, and balanced approach in real-world applications.