Abstract:Scoring the Optical Character Recognition (OCR) capabilities of Large Multimodal Models (LMMs) has witnessed growing interest recently. Existing benchmarks have highlighted the impressive performance of LMMs in text recognition; however, their abilities on certain challenging tasks, such as text localization, handwritten content extraction, and logical reasoning, remain underexplored. To bridge this gap, we introduce OCRBench v2, a large-scale bilingual text-centric benchmark with currently the most comprehensive set of tasks (4x more tasks than the previous multi-scene benchmark OCRBench), the widest coverage of scenarios (31 diverse scenarios including street scene, receipt, formula, diagram, and so on), and thorough evaluation metrics, with a total of 10,000 human-verified question-answering pairs and a high proportion of difficult samples. After carefully benchmarking state-of-the-art LMMs on OCRBench v2, we find that 20 out of 22 LMMs score below 50 (100 in total) and suffer from five-type limitations, including less frequently encountered text recognition, fine-grained perception, layout perception, complex element parsing, and logical reasoning. The benchmark and evaluation scripts are available at https://github.com/Yuliang-liu/MultimodalOCR.
Abstract:Hallucination, a phenomenon where large language models (LLMs) produce output that is factually incorrect or unrelated to the input, is a major challenge for LLM applications that require accuracy and dependability. In this paper, we introduce a reliable and high-speed production system aimed at detecting and rectifying the hallucination issue within LLMs. Our system encompasses named entity recognition (NER), natural language inference (NLI), span-based detection (SBD), and an intricate decision tree-based process to reliably detect a wide range of hallucinations in LLM responses. Furthermore, our team has crafted a rewriting mechanism that maintains an optimal mix of precision, response time, and cost-effectiveness. We detail the core elements of our framework and underscore the paramount challenges tied to response time, availability, and performance metrics, which are crucial for real-world deployment of these technologies. Our extensive evaluation, utilizing offline data and live production traffic, confirms the efficacy of our proposed framework and service.
Abstract:While large multi-modal models (LMM) have shown notable progress in multi-modal tasks, their capabilities in tasks involving dense textual content remains to be fully explored. Dense text, which carries important information, is often found in documents, tables, and product descriptions. Understanding dense text enables us to obtain more accurate information, assisting in making better decisions. To further explore the capabilities of LMM in complex text tasks, we propose the DT-VQA dataset, with 170k question-answer pairs. In this paper, we conduct a comprehensive evaluation of GPT4V, Gemini, and various open-source LMMs on our dataset, revealing their strengths and weaknesses. Furthermore, we evaluate the effectiveness of two strategies for LMM: prompt engineering and downstream fine-tuning. We find that even with automatically labeled training datasets, significant improvements in model performance can be achieved. We hope that this research will promote the study of LMM in dense text tasks. Code will be released at https://github.com/Yuliang-Liu/MultimodalOCR.
Abstract:Optical-SAR image matching is a fundamental task for image fusion and visual navigation. However, all large-scale open SAR dataset for methods development are collected from single platform, resulting in limited satellite types and spatial resolutions. Since images captured by different sensors vary significantly in both geometric and radiometric appearance, existing methods may fail to match corresponding regions containing the same content. Besides, most of existing datasets have not been categorized based on the characteristics of different scenes. To encourage the design of more general multi-modal image matching methods, we introduce a large-scale Multi-sources,Multi-resolutions, and Multi-scenes dataset for Optical-SAR image matching(3MOS). It consists of 155K optical-SAR image pairs, including SAR data from six commercial satellites, with resolutions ranging from 1.25m to 12.5m. The data has been classified into eight scenes including urban, rural, plains, hills, mountains, water, desert, and frozen earth. Extensively experiments show that none of state-of-the-art methods achieve consistently superior performance across different sources, resolutions and scenes. In addition, the distribution of data has a substantial impact on the matching capability of deep learning models, this proposes the domain adaptation challenge in optical-SAR image matching. Our data and code will be available at:https://github.com/3M-OS/3MOS.
Abstract:We present TextMonkey, a large multimodal model (LMM) tailored for text-centric tasks. Our approach introduces enhancement across several dimensions: By adopting Shifted Window Attention with zero-initialization, we achieve cross-window connectivity at higher input resolutions and stabilize early training; We hypothesize that images may contain redundant tokens, and by using similarity to filter out significant tokens, we can not only streamline the token length but also enhance the model's performance. Moreover, by expanding our model's capabilities to encompass text spotting and grounding, and incorporating positional information into responses, we enhance interpretability. It also learns to perform screenshot tasks through finetuning. Evaluation on 12 benchmarks shows notable improvements: 5.2% in Scene Text-Centric tasks (including STVQA, TextVQA, and OCRVQA), 6.9% in Document-Oriented tasks (such as DocVQA, InfoVQA, ChartVQA, DeepForm, Kleister Charity, and WikiTableQuestions), and 2.8% in Key Information Extraction tasks (comprising FUNSD, SROIE, and POIE). It outperforms in scene text spotting with a 10.9\% increase and sets a new standard on OCRBench, a comprehensive benchmark consisting of 29 OCR-related assessments, with a score of 561, surpassing previous open-sourced large multimodal models for document understanding. Code will be released at https://github.com/Yuliang-Liu/Monkey.
Abstract:Large Multimodal Models (LMMs) have shown promise in vision-language tasks but struggle with high-resolution input and detailed scene understanding. Addressing these challenges, we introduce Monkey to enhance LMM capabilities. Firstly, Monkey processes input images by dividing them into uniform patches, each matching the size (e.g., 448x448) used in the original training of the well-trained vision encoder. Equipped with individual adapter for each patch, Monkey can handle higher resolutions up to 1344x896 pixels, enabling the detailed capture of complex visual information. Secondly, it employs a multi-level description generation method, enriching the context for scene-object associations. This two-part strategy ensures more effective learning from generated data: the higher resolution allows for a more detailed capture of visuals, which in turn enhances the effectiveness of comprehensive descriptions. Extensive ablative results validate the effectiveness of our designs. Additionally, experiments on 18 datasets further demonstrate that Monkey surpasses existing LMMs in many tasks like Image Captioning and various Visual Question Answering formats. Specially, in qualitative tests focused on dense text question answering, Monkey has exhibited encouraging results compared with GPT4V. Code is available at https://github.com/Yuliang-Liu/Monkey.
Abstract:Large models have recently played a dominant role in natural language processing and multimodal vision-language learning. It remains less explored about their efficacy in text-related visual tasks. We conducted a comprehensive study of existing publicly available multimodal models, evaluating their performance in text recognition, text-based visual question answering, and key information extraction. Our findings reveal strengths and weaknesses in these models, which primarily rely on semantic understanding for word recognition and exhibit inferior perception of individual character shapes. They also display indifference towards text length and have limited capabilities in detecting fine-grained features in images. Consequently, these results demonstrate that even the current most powerful large multimodal models cannot match domain-specific methods in traditional text tasks and face greater challenges in more complex tasks. Most importantly, the baseline results showcased in this study could provide a foundational framework for the conception and assessment of innovative strategies targeted at enhancing zero-shot multimodal techniques. Evaluation pipeline will be available at https://github.com/Yuliang-Liu/MultimodalOCR.
Abstract:Oriented object detection is one of the most fundamental and challenging tasks in remote sensing, aiming at locating the oriented objects of numerous predefined object categories. Recently, deep learning based methods have achieved remarkable performance in detecting oriented objects in remote sensing imagery. However, a thorough review of the literature in remote sensing has not yet emerged. Therefore, we give a comprehensive survey of recent advances and cover many aspects of oriented object detection, including problem definition, commonly used datasets, evaluation protocols, detection frameworks, oriented object representations, and feature representations. Besides, we analyze and discuss state-of-the-art methods. We finally discuss future research directions to put forward some useful research guidance. We believe that this survey shall be valuable to researchers across academia and industry.
Abstract:We introduce LYSTO, the Lymphocyte Assessment Hackathon, which was held in conjunction with the MICCAI 2019 Conference in Shenzen (China). The competition required participants to automatically assess the number of lymphocytes, in particular T-cells, in histopathological images of colon, breast, and prostate cancer stained with CD3 and CD8 immunohistochemistry. Differently from other challenges setup in medical image analysis, LYSTO participants were solely given a few hours to address this problem. In this paper, we describe the goal and the multi-phase organization of the hackathon; we describe the proposed methods and the on-site results. Additionally, we present post-competition results where we show how the presented methods perform on an independent set of lung cancer slides, which was not part of the initial competition, as well as a comparison on lymphocyte assessment between presented methods and a panel of pathologists. We show that some of the participants were capable to achieve pathologist-level performance at lymphocyte assessment. After the hackathon, LYSTO was left as a lightweight plug-and-play benchmark dataset on grand-challenge website, together with an automatic evaluation platform. LYSTO has supported a number of research in lymphocyte assessment in oncology. LYSTO will be a long-lasting educational challenge for deep learning and digital pathology, it is available at https://lysto.grand-challenge.org/.
Abstract:Recently, unsupervised domain adaptation in satellite pose estimation has gained increasing attention, aiming at alleviating the annotation cost for training deep models. To this end, we propose a self-training framework based on the domain-agnostic geometrical constraints. Specifically, we train a neural network to predict the 2D keypoints of a satellite and then use PnP to estimate the pose. The poses of target samples are regarded as latent variables to formulate the task as a minimization problem. Furthermore, we leverage fine-grained segmentation to tackle the information loss issue caused by abstracting the satellite as sparse keypoints. Finally, we iteratively solve the minimization problem in two steps: pseudo-label generation and network training. Experimental results show that our method adapts well to the target domain. Moreover, our method won the 1st place on the sunlamp task of the second international Satellite Pose Estimation Competition.