Abstract:The modeling of industrial scenes is essential for simulations in industrial manufacturing. While large language models (LLMs) have shown significant progress in generating general 3D scenes from textual descriptions, generating industrial scenes with LLMs poses a unique challenge due to their demand for precise measurements and positioning, requiring complex planning over spatial arrangement. To address this challenge, we introduce SceneGenAgent, an LLM-based agent for generating industrial scenes through C# code. SceneGenAgent ensures precise layout planning through a structured and calculable format, layout verification, and iterative refinement to meet the quantitative requirements of industrial scenarios. Experiment results demonstrate that LLMs powered by SceneGenAgent exceed their original performance, reaching up to 81.0% success rate in real-world industrial scene generation tasks and effectively meeting most scene generation requirements. To further enhance accessibility, we construct SceneInstruct, a dataset designed for fine-tuning open-source LLMs to integrate into SceneGenAgent. Experiments show that fine-tuning open-source LLMs on SceneInstruct yields significant performance improvements, with Llama3.1-70B approaching the capabilities of GPT-4o. Our code and data are available at https://github.com/THUDM/SceneGenAgent .
Abstract:The development of Urdu scene text detection, recognition, and Visual Question Answering (VQA) technologies is crucial for advancing accessibility, information retrieval, and linguistic diversity in digital content, facilitating better understanding and interaction with Urdu-language visual data. This initiative seeks to bridge the gap between textual and visual comprehension. We propose a new multi-task Urdu scene text dataset comprising over 1000 natural scene images, which can be used for text detection, recognition, and VQA tasks. We provide fine-grained annotations for text instances, addressing the limitations of previous datasets for facing arbitrary-shaped texts. By incorporating additional annotation points, this dataset facilitates the development and assessment of methods that can handle diverse text layouts, intricate shapes, and non-standard orientations commonly encountered in real-world scenarios. Besides, the VQA annotations make it the first benchmark for the Urdu Text VQA method, which can prompt the development of Urdu scene text understanding. The proposed dataset is available at: https://github.com/Hiba-MeiRuan/Urdu-VQA-Dataset-/tree/main
Abstract:Scene text recognition is essential in many applications, including automated translation, information retrieval, driving assistance, and enhancing accessibility for individuals with visual impairments. Much research has been done to improve the accuracy and performance of scene text detection and recognition models. However, most of this research has been conducted in the most common languages, English and Chinese. There is a significant gap in low-resource languages, especially the Swahili Language. Swahili is widely spoken in East African countries but is still an under-explored language in scene text recognition. No studies have been focused explicitly on Swahili natural scene text detection and recognition, and no dataset for Swahili language scene text detection and recognition is publicly available. We propose a comprehensive dataset of Swahili scene text images and evaluate the dataset on different scene text detection and recognition models. The dataset contains 976 images collected in different places and under various circumstances. Each image has its annotation at the word level. The proposed dataset can also serve as a benchmark dataset specific to the Swahili language for evaluating and comparing different approaches and fostering future research endeavors. The dataset is available on GitHub via this link: https://github.com/FadilaW/Swahili-STR-Dataset
Abstract:Scene text detection techniques have garnered significant attention due to their wide-ranging applications. However, existing methods have a high demand for training data, and obtaining accurate human annotations is labor-intensive and time-consuming. As a solution, researchers have widely adopted synthetic text images as a complementary resource to real text images during pre-training. Yet there is still room for synthetic datasets to enhance the performance of scene text detectors. We contend that one main limitation of existing generation methods is the insufficient integration of foreground text with the background. To alleviate this problem, we present the Diffusion Model based Text Generator (DiffText), a pipeline that utilizes the diffusion model to seamlessly blend foreground text regions with the background's intrinsic features. Additionally, we propose two strategies to generate visually coherent text with fewer spelling errors. With fewer text instances, our produced text images consistently surpass other synthetic data in aiding text detectors. Extensive experiments on detecting horizontal, rotated, curved, and line-level texts demonstrate the effectiveness of DiffText in producing realistic text images.
Abstract:Artistic text recognition is an extremely challenging task with a wide range of applications. However, current scene text recognition methods mainly focus on irregular text while have not explored artistic text specifically. The challenges of artistic text recognition include the various appearance with special-designed fonts and effects, the complex connections and overlaps between characters, and the severe interference from background patterns. To alleviate these problems, we propose to recognize the artistic text at three levels. Firstly, corner points are applied to guide the extraction of local features inside characters, considering the robustness of corner structures to appearance and shape. In this way, the discreteness of the corner points cuts off the connection between characters, and the sparsity of them improves the robustness for background interference. Secondly, we design a character contrastive loss to model the character-level feature, improving the feature representation for character classification. Thirdly, we utilize Transformer to learn the global feature on image-level and model the global relationship of the corner points, with the assistance of a corner-query cross-attention mechanism. Besides, we provide an artistic text dataset to benchmark the performance. Experimental results verify the significant superiority of our proposed method on artistic text recognition and also achieve state-of-the-art performance on several blurred and perspective datasets.