SuperMap Software Co., Ltd
Abstract:Inference-time scaling strategies, particularly Monte Carlo Tree Search (MCTS), have significantly enhanced the reasoning capabilities of Large Language Models (LLMs). However, current approaches remain predominantly stateless, discarding successful reasoning patterns after each problem instance and failing to mimic the empirical accumulation of wisdom characteristic of human problem-solving. To bridge this gap, we introduce Empirical-MCTS, a dual-loop framework that transforms stateless search into a continuous, non-parametric learning process. The framework unifies local exploration with global memory optimization through two novel mechanisms: Pairwise-Experience-Evolutionary Meta-Prompting (PE-EMP) and a Memory Optimization Agent. PE-EMP functions as a reflexive optimizer within the local search, utilizing pairwise feedback to dynamically synthesize adaptive criteria and evolve meta-prompts (system prompts) in real-time. Simultaneously, the Memory Optimization Agent manages a global repository as a dynamic policy prior, employing atomic operations to distill high-quality insights across problems. Extensive evaluations on complex reasoning benchmarks, including AIME25, ARC-AGI-2, and MathArena Apex, demonstrate that Empirical-MCTS significantly outperforms both stateless MCTS strategies and standalone experience-driven agents. These results underscore the critical necessity of coupling structured search with empirical accumulation for mastering complex, open-ended reasoning tasks.
Abstract:In the wave of generative recommendation, we present OneMall, an end-to-end generative recommendation framework tailored for e-commerce services at Kuaishou. Our OneMall systematically unifies the e-commerce's multiple item distribution scenarios, such as Product-card, short-video and live-streaming. Specifically, it comprises three key components, aligning the entire model training pipeline to the LLM's pre-training/post-training: (1) E-commerce Semantic Tokenizer: we provide a tokenizer solution that captures both real-world semantics and business-specific item relations across different scenarios; (2) Transformer-based Architecture: we largely utilize Transformer as our model backbone, e.g., employing Query-Former for long sequence compression, Cross-Attention for multi-behavior sequence fusion, and Sparse MoE for scalable auto-regressive generation; (3) Reinforcement Learning Pipeline: we further connect retrieval and ranking models via RL, enabling the ranking model to serve as a reward signal for end-to-end policy retrieval model optimization. Extensive experiments demonstrate that OneMall achieves consistent improvements across all e-commerce scenarios: +13.01\% GMV in product-card, +15.32\% Orders in Short-Video, and +2.78\% Orders in Live-Streaming. OneMall has been deployed, serving over 400 million daily active users at Kuaishou.
Abstract:In the wave of generative recommendation, we present OneMall, an end-to-end generative recommendation framework tailored for e-commerce services at Kuaishou. Our OneMall systematically unifies the e-commerce's multiple item distribution scenarios, such as Product-card, short-video and live-streaming. Specifically, it comprises three key components, aligning the entire model training pipeline to the LLM's pre-training/post-training: (1) E-commerce Semantic Tokenizer: we provide a tokenizer solution that captures both real-world semantics and business-specific item relations across different scenarios; (2) Transformer-based Architecture: we largely utilize Transformer as our model backbone, e.g., employing Query-Former for long sequence compression, Cross-Attention for multi-behavior sequence fusion, and Sparse MoE for scalable auto-regressive generation; (3) Reinforcement Learning Pipeline: we further connect retrieval and ranking models via RL, enabling the ranking model to serve as a reward signal for end-to-end policy retrieval model optimization. Extensive experiments demonstrate that OneMall achieves consistent improvements across all e-commerce scenarios: +13.01\% GMV in product-card, +15.32\% Orders in Short-Video, and +2.78\% Orders in Live-Streaming. OneMall has been deployed, serving over 400 million daily active users at Kuaishou.
Abstract:Recent advances in camera-controlled video diffusion models have significantly improved video-camera alignment. However, the camera controllability still remains limited. In this work, we build upon Reward Feedback Learning and aim to further improve camera controllability. However, directly borrowing existing ReFL approaches faces several challenges. First, current reward models lack the capacity to assess video-camera alignment. Second, decoding latent into RGB videos for reward computation introduces substantial computational overhead. Third, 3D geometric information is typically neglected during video decoding. To address these limitations, we introduce an efficient camera-aware 3D decoder that decodes video latent into 3D representations for reward quantization. Specifically, video latent along with the camera pose are decoded into 3D Gaussians. In this process, the camera pose not only acts as input, but also serves as a projection parameter. Misalignment between the video latent and camera pose will cause geometric distortions in the 3D structure, resulting in blurry renderings. Based on this property, we explicitly optimize pixel-level consistency between the rendered novel views and ground-truth ones as reward. To accommodate the stochastic nature, we further introduce a visibility term that selectively supervises only deterministic regions derived via geometric warping. Extensive experiments conducted on RealEstate10K and WorldScore benchmarks demonstrate the effectiveness of our proposed method. Project page: \href{https://a-bigbao.github.io/CamPilot/}{CamPilot Page}.
Abstract:DepthCropSeg++: a foundation model for crop segmentation, capable of segmenting different crop species under open in-field environment. Crop segmentation is a fundamental task for modern agriculture, which closely relates to many downstream tasks such as plant phenotyping, density estimation, and weed control. In the era of foundation models, a number of generic large language and vision models have been developed. These models have demonstrated remarkable real world generalization due to significant model capacity and largescale datasets. However, current crop segmentation models mostly learn from limited data due to expensive pixel-level labelling cost, often performing well only under specific crop types or controlled environment. In this work, we follow the vein of our previous work DepthCropSeg, an almost unsupervised approach to crop segmentation, to scale up a cross-species and crossscene crop segmentation dataset, with 28,406 images across 30+ species and 15 environmental conditions. We also build upon a state-of-the-art semantic segmentation architecture ViT-Adapter architecture, enhance it with dynamic upsampling for improved detail awareness, and train the model with a two-stage selftraining pipeline. To systematically validate model performance, we conduct comprehensive experiments to justify the effectiveness and generalization capabilities across multiple crop datasets. Results demonstrate that DepthCropSeg++ achieves 93.11% mIoU on a comprehensive testing set, outperforming both supervised baselines and general-purpose vision foundation models like Segmentation Anything Model (SAM) by significant margins (+0.36% and +48.57% respectively). The model particularly excels in challenging scenarios including night-time environment (86.90% mIoU), high-density canopies (90.09% mIoU), and unseen crop varieties (90.09% mIoU), indicating a new state of the art for crop segmentation.
Abstract:In this paper, we introduce a clinical diagnosis template-based pipeline to systematically collect and structure pathological information. In collaboration with pathologists and guided by the the College of American Pathologists (CAP) Cancer Protocols, we design a Clinical Pathology Report Template (CPRT) that ensures comprehensive and standardized extraction of diagnostic elements from pathology reports. We validate the effectiveness of our pipeline on TCGA-BRCA. First, we extract pathological features from reports using CPRT. These features are then used to build CTIS-Align, a dataset of 80k slide-description pairs from 804 WSIs for vision-language alignment training, and CTIS-Bench, a rigorously curated VQA benchmark comprising 977 WSIs and 14,879 question-answer pairs. CTIS-Bench emphasizes clinically grounded, closed-ended questions (e.g., tumor grade, receptor status) that reflect real diagnostic workflows, minimize non-visual reasoning, and require genuine slide understanding. We further propose CTIS-QA, a Slide-level Question Answering model, featuring a dual-stream architecture that mimics pathologists' diagnostic approach. One stream captures global slide-level context via clustering-based feature aggregation, while the other focuses on salient local regions through attention-guided patch perception module. Extensive experiments on WSI-VQA, CTIS-Bench, and slide-level diagnostic tasks show that CTIS-QA consistently outperforms existing state-of-the-art models across multiple metrics. Code and data are available at https://github.com/HLSvois/CTIS-QA.
Abstract:Video Individual Counting (VIC) is a recently introduced task aiming to estimate pedestrian flux from a video. It extends Video Crowd Counting (VCC) beyond the per-frame pedestrian count. In contrast to VCC that learns to count pedestrians across frames, VIC must identify co-existent pedestrians between frames, which turns out to be a correspondence problem. Existing VIC approaches, however, can underperform in congested scenes such as metro commuting. To address this, we build WuhanMetroCrowd, one of the first VIC datasets that characterize crowded, dynamic pedestrian flows. It features sparse-to-dense density levels, short-to-long video clips, slow-to-fast flow variations, front-to-back appearance changes, and light-to-heavy occlusions. To better adapt VIC approaches to crowds, we rethink the nature of VIC and recognize two informative priors: i) the social grouping prior that indicates pedestrians tend to gather in groups and ii) the spatial-temporal displacement prior that informs an individual cannot teleport physically. The former inspires us to relax the standard one-to-one (O2O) matching used by VIC to one-to-many (O2M) matching, implemented by an implicit context generator and a O2M matcher; the latter facilitates the design of a displacement prior injector, which strengthens not only O2M matching but also feature extraction and model training. These designs jointly form a novel and strong VIC baseline OMAN++. Extensive experiments show that OMAN++ not only outperforms state-of-the-art VIC baselines on the standard SenseCrowd, CroHD, and MovingDroneCrowd benchmarks, but also indicates a clear advantage in crowded scenes, with a 38.12% error reduction on our WuhanMetroCrowd dataset. Code, data, and pretrained models are available at https://github.com/tiny-smart/OMAN.
Abstract:Realistic virtual try-on (VTON) concerns not only faithful rendering of garment details but also coordination of the style. Prior art typically pursues the former, but neglects a key factor that shapes the holistic style -- garment fit. Garment fit delineates how a garment aligns with the body of a wearer and is a fundamental element in fashion design. In this work, we introduce fit-aware VTON and present FitControler, a learnable plug-in that can seamlessly integrate into modern VTON models to enable customized fit control. To achieve this, we highlight two challenges: i) how to delineate layouts of different fits and ii) how to render the garment that matches the layout. FitControler first features a fit-aware layout generator to redraw the body-garment layout conditioned on a set of delicately processed garment-agnostic representations, and a multi-scale fit injector is then used to deliver layout cues to enable layout-driven VTON. In particular, we build a fit-aware VTON dataset termed Fit4Men, including 13,000 body-garment pairs of different fits, covering both tops and bottoms, and featuring varying camera distances and body poses. Two fit consistency metrics are also introduced to assess the fitness of generations. Extensive experiments show that FitControler can work with various VTON models and achieve accurate fit control. Code and data will be released.
Abstract:Cooperative suspended aerial transportation is highly susceptible to multi-source disturbances such as aerodynamic effects and thrust uncertainties. To achieve precise load manipulation, existing methods often rely on extra sensors to measure cable directions or the payload's pose, which increases the system cost and complexity. A fundamental question remains: is the payload's pose observable under multi-source disturbances using only the drones' odometry information? To answer this question, this work focuses on the two-drone-bar system and proves that the whole system is observable when only two or fewer types of lumped disturbances exist by using the observability rank criterion. To the best of our knowledge, we are the first to present such a conclusion and this result paves the way for more cost-effective and robust systems by minimizing their sensor suites. Next, to validate this analysis, we consider the situation where the disturbances are only exerted on the drones, and develop a composite disturbance filtering scheme. A disturbance observer-based error-state extended Kalman filter is designed for both state and disturbance estimation, which renders improved estimation performance for the whole system evolving on the manifold $(\mathbb{R}^3)^2\times(TS^2)^3$. Our simulation and experimental tests have validated that it is possible to fully estimate the state and disturbance of the system with only odometry information of the drones.
Abstract:Autonomous driving (AD) systems struggle in long-tail scenarios due to limited world knowledge and weak visual dynamic modeling. Existing vision-language-action (VLA)-based methods cannot leverage unlabeled videos for visual causal learning, while world model-based methods lack reasoning capabilities from large language models. In this paper, we construct multiple specialized datasets providing reasoning and planning annotations for complex scenarios. Then, a unified Understanding-Generation-Planning framework, named UniUGP, is proposed to synergize scene reasoning, future video generation, and trajectory planning through a hybrid expert architecture. By integrating pre-trained VLMs and video generation models, UniUGP leverages visual dynamics and semantic reasoning to enhance planning performance. Taking multi-frame observations and language instructions as input, it produces interpretable chain-of-thought reasoning, physically consistent trajectories, and coherent future videos. We introduce a four-stage training strategy that progressively builds these capabilities across multiple existing AD datasets, along with the proposed specialized datasets. Experiments demonstrate state-of-the-art performance in perception, reasoning, and decision-making, with superior generalization to challenging long-tail situations.