Abstract:Due to its training stability and strong expression, the diffusion model has attracted considerable attention in offline reinforcement learning. However, several challenges have also come with it: 1) The demand for a large number of diffusion steps makes the diffusion-model-based methods time inefficient and limits their applications in real-time control; 2) How to achieve policy improvement with accurate guidance for diffusion model-based policy is still an open problem. Inspired by the consistency model, we propose a novel time-efficiency method named Consistency Policy with Q-Learning (CPQL), which derives action from noise by a single step. By establishing a mapping from the reverse diffusion trajectories to the desired policy, we simultaneously address the issues of time efficiency and inaccurate guidance when updating diffusion model-based policy with the learned Q-function. We demonstrate that CPQL can achieve policy improvement with accurate guidance for offline reinforcement learning, and can be seamlessly extended for online RL tasks. Experimental results indicate that CPQL achieves new state-of-the-art performance on 11 offline and 21 online tasks, significantly improving inference speed by nearly 45 times compared to Diffusion-QL. We will release our code later.
Abstract:Iris presentation attack detection (PAD) has achieved great success under intra-domain settings but easily degrades on unseen domains. Conventional domain generalization methods mitigate the gap by learning domain-invariant features. However, they ignore the discriminative information in the domain-specific features. Moreover, we usually face a more realistic scenario with only one single domain available for training. To tackle the above issues, we propose a Single Domain Dynamic Generalization (SDDG) framework, which simultaneously exploits domain-invariant and domain-specific features on a per-sample basis and learns to generalize to various unseen domains with numerous natural images. Specifically, a dynamic block is designed to adaptively adjust the network with a dynamic adaptor. And an information maximization loss is further combined to increase diversity. The whole network is integrated into the meta-learning paradigm. We generate amplitude perturbed images and cover diverse domains with natural images. Therefore, the network can learn to generalize to the perturbed domains in the meta-test phase. Extensive experiments show the proposed method is effective and outperforms the state-of-the-art on LivDet-Iris 2017 dataset.
Abstract:Iris presentation attack detection (PAD) has achieved remarkable success to ensure the reliability and security of iris recognition systems. Most existing methods exploit discriminative features in the spatial domain and report outstanding performance under intra-dataset settings. However, the degradation of performance is inevitable under cross-dataset settings, suffering from domain shift. In consideration of real-world applications, a small number of bonafide samples are easily accessible. We thus define a new domain adaptation setting called Few-shot One-class Domain Adaptation (FODA), where adaptation only relies on a limited number of target bonafide samples. To address this problem, we propose a novel FODA framework based on the expressive power of frequency information. Specifically, our method integrates frequency-related information through two proposed modules. Frequency-based Attention Module (FAM) aggregates frequency information into spatial attention and explicitly emphasizes high-frequency fine-grained features. Frequency Mixing Module (FMM) mixes certain frequency components to generate large-scale target-style samples for adaptation with limited target bonafide samples. Extensive experiments on LivDet-Iris 2017 dataset demonstrate the proposed method achieves state-of-the-art or competitive performance under both cross-dataset and intra-dataset settings.
Abstract:There is a growing interest in creating tools to assist in clinical note generation using the audio of provider-patient encounters. Motivated by this goal and with the help of providers and medical scribes, we developed an annotation scheme to extract relevant clinical concepts. We used this annotation scheme to label a corpus of about 6k clinical encounters. This was used to train a state-of-the-art tagging model. We report ontologies, labeling results, model performances, and detailed analyses of the results. Our results show that the entities related to medications can be extracted with a relatively high accuracy of 0.90 F-score, followed by symptoms at 0.72 F-score, and conditions at 0.57 F-score. In our task, we not only identify where the symptoms are mentioned but also map them to canonical forms as they appear in the clinical notes. Of the different types of errors, in about 19-38% of the cases, we find that the model output was correct, and about 17-32% of the errors do not impact the clinical note. Taken together, the models developed in this work are more useful than the F-scores reflect, making it a promising approach for practical applications.
Abstract:This paper describes novel models tailored for a new application, that of extracting the symptoms mentioned in clinical conversations along with their status. Lack of any publicly available corpus in this privacy-sensitive domain led us to develop our own corpus, consisting of about 3K conversations annotated by professional medical scribes. We propose two novel deep learning approaches to infer the symptom names and their status: (1) a new hierarchical span-attribute tagging (\SAT) model, trained using curriculum learning, and (2) a variant of sequence-to-sequence model which decodes the symptoms and their status from a few speaker turns within a sliding window over the conversation. This task stems from a realistic application of assisting medical providers in capturing symptoms mentioned by patients from their clinical conversations. To reflect this application, we define multiple metrics. From inter-rater agreement, we find that the task is inherently difficult. We conduct comprehensive evaluations on several contrasting conditions and observe that the performance of the models range from an F-score of 0.5 to 0.8 depending on the condition. Our analysis not only reveals the inherent challenges of the task, but also provides useful directions to improve the models.