Abstract:Large language models (LLMs) have gained extended context windows through scaling positional encodings and lightweight continual pre-training. However, this often leads to degraded performance on short-text tasks, while the reasons for this degradation remain insufficiently explored. In this work, we identify two primary factors contributing to this issue: distribution drift in hidden states and attention scores, and catastrophic forgetting during continual pre-training. To address these challenges, we propose Long Context Pre-training with Restoration Distillation (LongReD), a novel approach designed to mitigate short-text performance degradation through minimizing the distribution discrepancy between the extended and original models. Besides training on long texts, LongReD distills the hidden state of selected layers from the original model on short texts. Additionally, LongReD also introduces a short-to-long distillation, aligning the output distribution on short texts with that on long texts by leveraging skipped positional indices. Experiments on common text benchmarks demonstrate that LongReD effectively preserves the model's short-text performance while maintaining comparable or even better capacity to handle long texts than baselines.
Abstract:In the era of vast digital information, the sheer volume and heterogeneity of available information present significant challenges for intricate information seeking. Users frequently face multistep web search tasks that involve navigating vast and varied data sources. This complexity demands every step remains comprehensive, accurate, and relevant. However, traditional search methods often struggle to balance the need for localized precision with the broader context required for holistic understanding, leaving critical facets of intricate queries underexplored. In this paper, we introduce an LLM-based search assistant that adopts a new information seeking paradigm with holistically guided Monte Carlo tree search (HG-MCTS). We reformulate the task as a progressive information collection process with a knowledge memory and unite an adaptive checklist with multi-perspective reward modeling in MCTS. The adaptive checklist provides explicit sub-goals to guide the MCTS process toward comprehensive coverage of complex user queries. Simultaneously, our multi-perspective reward modeling offers both exploration and retrieval rewards, along with progress feedback that tracks completed and remaining sub-goals, refining the checklist as the tree search progresses. By striking a balance between localized tree expansion and global guidance, HG-MCTS reduces redundancy in search paths and ensures that all crucial aspects of an intricate query are properly addressed. Extensive experiments on real-world intricate information seeking tasks demonstrate that HG-MCTS acquires thorough knowledge collections and delivers more accurate final responses compared with existing baselines.
Abstract:Large language models (LLMs) demonstrate exceptional capabilities, yet still face the hallucination issue. Typical text generation approaches adopt an auto-regressive generation without deliberate reasoning, which often results in untrustworthy and factually inaccurate responses. In this paper, we propose HaluSearch, a novel framework that incorporates tree search-based algorithms (e.g. MCTS) to enable an explicit slow thinking generation process for mitigating hallucinations of LLMs during inference. Specifically, HaluSearch frames text generation as a step-by-step reasoning process, using a self-evaluation reward model to score each generation step and guide the tree search towards the most reliable generation pathway for fully exploiting the internal knowledge of LLMs. To balance efficiency and quality, we introduce a hierarchical thinking system switch mechanism inspired by the dual process theory in cognitive science, which dynamically alternates between fast and slow thinking modes at both the instance and step levels, adapting to the complexity of questions and reasoning states. We conduct extensive experiments on both English and Chinese datasets and the results show that our approach significantly outperforms baseline approaches.
Abstract:Despite their outstanding capabilities, large language models (LLMs) are prone to hallucination and producing factually incorrect information. This challenge has spurred efforts in attributed text generation, which prompts LLMs to generate content with supporting evidence. In this paper, we propose a novel framework, called Think&Cite, and formulate attributed text generation as a multi-step reasoning problem integrated with search. Specifically, we propose Self-Guided Monte Carlo Tree Search (SG-MCTS), which capitalizes on the self-reflection capability of LLMs to reflect on the intermediate states of MCTS for guiding the tree expansion process. To provide reliable and comprehensive feedback, we introduce Progress Reward Models to measure the progress of tree search from the root to the current state from two aspects, i.e., generation and attribution progress. We conduct extensive experiments on three datasets and the results show that our approach significantly outperforms baseline approaches.
Abstract:Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks. Despite the successes of chain-of-thought and tree-based search methods, they mainly depend on the internal knowledge of LLMs to search over intermediate reasoning steps, limited to dealing with simple tasks involving fewer reasoning steps. In this paper, we propose \textbf{RAG-Star}, a novel RAG approach that integrates the retrieved information to guide the tree-based deliberative reasoning process that relies on the inherent knowledge of LLMs. By leveraging Monte Carlo Tree Search, RAG-Star iteratively plans intermediate sub-queries and answers for reasoning based on the LLM itself. To consolidate internal and external knowledge, we propose an retrieval-augmented verification that utilizes query- and answer-aware reward modeling to provide feedback for the inherent reasoning of LLMs. Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods.
Abstract:We present PartGLEE, a part-level foundation model for locating and identifying both objects and parts in images. Through a unified framework, PartGLEE accomplishes detection, segmentation, and grounding of instances at any granularity in the open world scenario. Specifically, we propose a Q-Former to construct the hierarchical relationship between objects and parts, parsing every object into corresponding semantic parts. By incorporating a large amount of object-level data, the hierarchical relationships can be extended, enabling PartGLEE to recognize a rich variety of parts. We conduct comprehensive studies to validate the effectiveness of our method, PartGLEE achieves the state-of-the-art performance across various part-level tasks and obtain competitive results on object-level tasks. The proposed PartGLEE significantly enhances hierarchical modeling capabilities and part-level perception over our previous GLEE model. Further analysis indicates that the hierarchical cognitive ability of PartGLEE is able to facilitate a detailed comprehension in images for mLLMs. The model and code will be released at https://provencestar.github.io/PartGLEE-Vision/ .
Abstract:Adapting general large language models (LLMs) to specialized domains presents great challenges due to varied data distributions. This adaptation typically requires continual pre-training on massive domain-specific corpora to facilitate knowledge memorization, followed by training to apply this knowledge following human instructions and preferences. However, this method may result in inefficient knowledge memorization due to a lack of awareness of knowledge utilization and imposes substantial demands on LLMs to simultaneously learn knowledge utilization and format alignment with limited training samples. To facilitate the domain adaptation of LLM, we revise this process and propose a new domain adaptation framework including domain knowledge learning and general format alignment, called Mix-CPT. Specifically, we first conduct a knowledge mixture continual pre-training that concurrently focuses on knowledge memorization and utilization, allowing for mutual reinforcement. To avoid catastrophic forgetting during the continual pre-training process, we further incorporate a logit swap self-distillation constraint. Subsequently, leveraging the knowledge and capabilities acquired during continual pre-training, we efficiently perform instruction tuning and alignment with a few general training samples to achieve format alignment. Extensive experiments demonstrate that our proposed Mix-CPT framework can simultaneously improve the task-solving capabilities of LLMs on the target and general domains compared to the traditional adaptation methods.
Abstract:Drug-target relationships may now be predicted computationally using bioinformatics data, which is a valuable tool for understanding pharmacological effects, enhancing drug development efficiency, and advancing related research. A number of structure-based, ligand-based and network-based approaches have now emerged. Furthermore, the integration of graph attention networks with intricate drug target studies is an application area of growing interest. In our work, we formulate a model called MKDTI by extracting kernel information from various layer embeddings of a graph attention network. This combination improves the prediction ability with respect to novel drug-target relationships. We first build a drug-target heterogeneous network using heterogeneous data of drugs and targets, and then use a self-enhanced multi-head graph attention network to extract potential features in each layer. Next, we utilize embeddings of each layer to computationally extract kernel matrices and fuse multiple kernel matrices. Finally, we use a Dual Laplacian Regularized Least Squares framework to forecast novel drug-target entity connections. This prediction can be facilitated by integrating the kernel matrix associated with the drug-target. We measured our model's efficacy using AUPR and AUC. Compared to the benchmark algorithms, our model outperforms them in the prediction outcomes. In addition, we conducted an experiment on kernel selection. The results show that the multi-kernel fusion approach combined with the kernel matrix generated by the graph attention network provides complementary insights into the model. The fusion of this information helps to enhance the accuracy of the predictions.
Abstract:To facilitate the research on large language models (LLMs), this paper presents a comprehensive and unified library, LLMBox, to ease the development, use, and evaluation of LLMs. This library is featured with three main merits: (1) a unified data interface that supports the flexible implementation of various training strategies, (2) a comprehensive evaluation that covers extensive tasks, datasets, and models, and (3) more practical consideration, especially on user-friendliness and efficiency. With our library, users can easily reproduce existing methods, train new models, and conduct comprehensive performance comparisons. To rigorously test LLMBox, we conduct extensive experiments in a diverse coverage of evaluation settings, and experimental results demonstrate the effectiveness and efficiency of our library in supporting various implementations related to LLMs. The detailed introduction and usage guidance can be found at https://github.com/RUCAIBox/LLMBox.
Abstract:Large language models (LLMs) have become the foundation of many applications, leveraging their extensive capabilities in processing and understanding natural language. While many open-source LLMs have been released with technical reports, the lack of training details hinders further research and development. This paper presents the development of YuLan, a series of open-source LLMs with $12$ billion parameters. The base model of YuLan is pre-trained on approximately $1.7$T tokens derived from a diverse corpus, including massive English, Chinese, and multilingual texts. We design a three-stage pre-training method to enhance YuLan's overall capabilities. Subsequent phases of training incorporate instruction-tuning and human alignment, employing a substantial volume of high-quality synthesized data. To facilitate the learning of complex and long-tail knowledge, we devise a curriculum-learning framework throughout across these stages, which helps LLMs learn knowledge in an easy-to-hard manner. YuLan's training is finished on Jan, 2024 and has achieved performance on par with state-of-the-art LLMs across various English and Chinese benchmarks. This paper outlines a comprehensive technical roadmap for developing LLMs from scratch. Our model and codes are available at https://github.com/RUC-GSAI/YuLan-Chat.