Abstract:Neural Radiance Fields (NeRF) have revolutionized 3D computer vision and graphics, facilitating novel view synthesis and influencing sectors like extended reality and e-commerce. However, NeRF's dependence on extensive data collection, including sensitive scene image data, introduces significant privacy risks when users upload this data for model training. To address this concern, we first propose SplitNeRF, a training framework that incorporates split learning (SL) techniques to enable privacy-preserving collaborative model training between clients and servers without sharing local data. Despite its benefits, we identify vulnerabilities in SplitNeRF by developing two attack methods, Surrogate Model Attack and Scene-aided Surrogate Model Attack, which exploit the shared gradient data and a few leaked scene images to reconstruct private scene information. To counter these threats, we introduce $S^2$NeRF, secure SplitNeRF that integrates effective defense mechanisms. By introducing decaying noise related to the gradient norm into the shared gradient information, $S^2$NeRF preserves privacy while maintaining a high utility of the NeRF model. Our extensive evaluations across multiple datasets demonstrate the effectiveness of $S^2$NeRF against privacy breaches, confirming its viability for secure NeRF training in sensitive applications.
Abstract:Camera pose estimation is a fundamental problem in robotics. This paper focuses on two issues of interest: First, point and line features have complementary advantages, and it is of great value to design a uniform algorithm that can fuse them effectively; Second, with the development of modern front-end techniques, a large number of features can exist in a single image, which presents a potential for highly accurate robot pose estimation. With these observations, we propose AOPnP(L), an optimal linear-time camera-robot pose estimation algorithm from points and lines. Specifically, we represent a line with two distinct points on it and unify the noise model for point and line measurements where noises are added to 2D points in the image. By utilizing Plucker coordinates for line parameterization, we formulate a maximum likelihood (ML) problem for combined point and line measurements. To optimally solve the ML problem, AOPnP(L) adopts a two-step estimation scheme. In the first step, a consistent estimate that can converge to the true pose is devised by virtue of bias elimination. In the second step, a single Gauss-Newton iteration is executed to refine the initial estimate. AOPnP(L) features theoretical optimality in the sense that its mean squared error converges to the Cramer-Rao lower bound. Moreover, it owns a linear time complexity. These properties make it well-suited for precision-demanding and real-time robot pose estimation. Extensive experiments are conducted to validate our theoretical developments and demonstrate the superiority of AOPnP(L) in both static localization and dynamic odometry systems.
Abstract:We present PartGLEE, a part-level foundation model for locating and identifying both objects and parts in images. Through a unified framework, PartGLEE accomplishes detection, segmentation, and grounding of instances at any granularity in the open world scenario. Specifically, we propose a Q-Former to construct the hierarchical relationship between objects and parts, parsing every object into corresponding semantic parts. By incorporating a large amount of object-level data, the hierarchical relationships can be extended, enabling PartGLEE to recognize a rich variety of parts. We conduct comprehensive studies to validate the effectiveness of our method, PartGLEE achieves the state-of-the-art performance across various part-level tasks and obtain competitive results on object-level tasks. The proposed PartGLEE significantly enhances hierarchical modeling capabilities and part-level perception over our previous GLEE model. Further analysis indicates that the hierarchical cognitive ability of PartGLEE is able to facilitate a detailed comprehension in images for mLLMs. The model and code will be released at https://provencestar.github.io/PartGLEE-Vision/ .
Abstract:Robot audition systems with multiple microphone arrays have many applications in practice. However, accurate calibration of multiple microphone arrays remains challenging because there are many unknown parameters to be identified, including the relative transforms (i.e., orientation, translation) and asynchronous factors (i.e., initial time offset and sampling clock difference) between microphone arrays. To tackle these challenges, in this paper, we adopt batch simultaneous localization and mapping (SLAM) for joint calibration of multiple asynchronous microphone arrays and sound source localization. Using the Fisher information matrix (FIM) approach, we first conduct the observability analysis (i.e., parameter identifiability) of the above-mentioned calibration problem and establish necessary/sufficient conditions under which the FIM and the Jacobian matrix have full column rank, which implies the identifiability of the unknown parameters. We also discover several scenarios where the unknown parameters are not uniquely identifiable. Subsequently, we propose an effective framework to initialize the unknown parameters, which is used as the initial guess in batch SLAM for multiple microphone arrays calibration, aiming to further enhance optimization accuracy and convergence. Extensive numerical simulations and real experiments have been conducted to verify the performance of the proposed method. The experiment results show that the proposed pipeline achieves higher accuracy with fast convergence in comparison to methods that use the noise-corrupted ground truth of the unknown parameters as the initial guess in the optimization and other existing frameworks.
Abstract:In this paper, we investigate the problem of estimating the 4-DOF (three-dimensional position and orientation) robot-robot relative frame transformation using odometers and distance measurements between robots. Firstly, we apply a two-step estimation method based on maximum likelihood estimation. Specifically, a good initial value is obtained through unconstrained least squares and projection, followed by a more accurate estimate achieved through one-step Gauss-Newton iteration. Additionally, the optimal installation positions of Ultra-Wideband (UWB) are provided, and the minimum operating time under different quantities of UWB devices is determined. Simulation demonstrates that the two-step approach offers faster computation with guaranteed accuracy while effectively addressing the relative transformation estimation problem within limited space constraints. Furthermore, this method can be applied to real-time relative transformation estimation when a specific number of UWB devices are installed.
Abstract:Given 2D point correspondences between an image pair, inferring the camera motion is a fundamental issue in the computer vision community. The existing works generally set out from the epipolar constraint and estimate the essential matrix, which is not optimal in the maximum likelihood (ML) sense. In this paper, we dive into the original measurement model with respect to the rotation matrix and normalized translation vector and formulate the ML problem. We then propose a two-step algorithm to solve it: In the first step, we estimate the variance of measurement noises and devise a consistent estimator based on bias elimination; In the second step, we execute a one-step Gauss-Newton iteration on manifold to refine the consistent estimate. We prove that the proposed estimate owns the same asymptotic statistical properties as the ML estimate: The first is consistency, i.e., the estimate converges to the ground truth as the point number increases; The second is asymptotic efficiency, i.e., the mean squared error of the estimate converges to the theoretical lower bound -- Cramer-Rao bound. In addition, we show that our algorithm has linear time complexity. These appealing characteristics endow our estimator with a great advantage in the case of dense point correspondences. Experiments on both synthetic data and real images demonstrate that when the point number reaches the order of hundreds, our estimator outperforms the state-of-the-art ones in terms of estimation accuracy and CPU time.
Abstract:A filter for inertial-based odometry is a recursive method used to estimate the pose from measurements of ego-motion and relative pose. Currently, there is no known filter that guarantees the computation of a globally optimal solution for the non-linear measurement model. In this paper, we demonstrate that an innovative filter, with the state being $SE_2(3)$ and the $\sqrt{n}$-\textit{consistent} pose as the initialization, efficiently achieves \textit{asymptotic optimality} in terms of minimum mean square error. This approach is tailored for real-time SLAM and inertial-based odometry applications. Our first contribution is that we propose an iterative filtering method based on the Gauss-Newton method on Lie groups which is numerically to solve the estimation of states from a priori and non-linear measurements. The filtering stands out due to its iterative mechanism and adaptive initialization. Second, when dealing with environmental measurements of the surroundings, we utilize a $\sqrt{n}$-consistent pose as the initial value for the update step in a single iteration. The solution is closed in form and has computational complexity $O(n)$. Third, we theoretically show that the approach can achieve asymptotic optimality in the sense of minimum mean square error from the a priori and virtual relative pose measurements (see Problem~\ref{prob:new update problem}). Finally, to validate our method, we carry out extensive numerical and experimental evaluations. Our results consistently demonstrate that our approach outperforms other state-of-the-art filter-based methods, including the iterated extended Kalman filter and the invariant extended Kalman filter, in terms of accuracy and running time.
Abstract:We present GLEE in this work, an object-level foundation model for locating and identifying objects in images and videos. Through a unified framework, GLEE accomplishes detection, segmentation, tracking, grounding, and identification of arbitrary objects in the open world scenario for various object perception tasks. Adopting a cohesive learning strategy, GLEE acquires knowledge from diverse data sources with varying supervision levels to formulate general object representations, excelling in zero-shot transfer to new data and tasks. Specifically, we employ an image encoder, text encoder, and visual prompter to handle multi-modal inputs, enabling to simultaneously solve various object-centric downstream tasks while maintaining state-of-the-art performance. Demonstrated through extensive training on over five million images from diverse benchmarks, GLEE exhibits remarkable versatility and improved generalization performance, efficiently tackling downstream tasks without the need for task-specific adaptation. By integrating large volumes of automatically labeled data, we further enhance its zero-shot generalization capabilities. Additionally, GLEE is capable of being integrated into Large Language Models, serving as a foundational model to provide universal object-level information for multi-modal tasks. We hope that the versatility and universality of our method will mark a significant step in the development of efficient visual foundation models for AGI systems. The model and code will be released at https://glee-vision.github.io .
Abstract:Despite significant efforts, cutting-edge video segmentation methods still remain sensitive to occlusion and rapid movement, due to their reliance on the appearance of objects in the form of object embeddings, which are vulnerable to these disturbances. A common solution is to use optical flow to provide motion information, but essentially it only considers pixel-level motion, which still relies on appearance similarity and hence is often inaccurate under occlusion and fast movement. In this work, we study the instance-level motion and present InstMove, which stands for Instance Motion for Object-centric Video Segmentation. In comparison to pixel-wise motion, InstMove mainly relies on instance-level motion information that is free from image feature embeddings, and features physical interpretations, making it more accurate and robust toward occlusion and fast-moving objects. To better fit in with the video segmentation tasks, InstMove uses instance masks to model the physical presence of an object and learns the dynamic model through a memory network to predict its position and shape in the next frame. With only a few lines of code, InstMove can be integrated into current SOTA methods for three different video segmentation tasks and boost their performance. Specifically, we improve the previous arts by 1.5 AP on OVIS dataset, which features heavy occlusions, and 4.9 AP on YouTubeVIS-Long dataset, which mainly contains fast-moving objects. These results suggest that instance-level motion is robust and accurate, and hence serving as a powerful solution in complex scenarios for object-centric video segmentation.
Abstract:We study the probabilistic sampling of a random variable, in which the variable is sampled only if it falls outside a given set, which is called the silence set. This helps us to understand optimal event-based sampling for the special case of IID random processes, and also to understand the design of a sub-optimal scheme for other cases. We consider the design of this probabilistic sampling for a scalar, log-concave random variable, to minimize either the mean square estimation error, or the mean absolute estimation error. We show that the optimal silence interval: (i) is essentially unique, and (ii) is the limit of an iterative procedure of centering. Further we show through numerical experiments that super-level intervals seem to be remarkably near-optimal for mean square estimation. Finally we use the Gauss inequality for scalar unimodal densities, to show that probabilistic sampling gives a mean square distortion that is less than a third of the distortion incurred by periodic sampling, if the average sampling rate is between 0.3 and 0.9 samples per tick.