Abstract:Text-to-image (T2I) models such as Stable Diffusion have advanced rapidly and are now widely used in content creation. However, these models can be misused to generate harmful content, including nudity or violence, posing significant safety risks. While most platforms employ content moderation systems, underlying vulnerabilities can still be exploited by determined adversaries. Recent research on red-teaming and adversarial attacks against T2I models has notable limitations: some studies successfully generate highly toxic images but use adversarial prompts that are easily detected and blocked by safety filters, while others focus on bypassing safety mechanisms but fail to produce genuinely harmful outputs, neglecting the discovery of truly high-risk prompts. Consequently, there remains a lack of reliable tools for evaluating the safety of defended T2I models. To address this gap, we propose GenBreak, a framework that fine-tunes a red-team large language model (LLM) to systematically explore underlying vulnerabilities in T2I generators. Our approach combines supervised fine-tuning on curated datasets with reinforcement learning via interaction with a surrogate T2I model. By integrating multiple reward signals, we guide the LLM to craft adversarial prompts that enhance both evasion capability and image toxicity, while maintaining semantic coherence and diversity. These prompts demonstrate strong effectiveness in black-box attacks against commercial T2I generators, revealing practical and concerning safety weaknesses.
Abstract:Red teaming has proven to be an effective method for identifying and mitigating vulnerabilities in Large Language Models (LLMs). Reinforcement Fine-Tuning (RFT) has emerged as a promising strategy among existing red teaming techniques. However, a lack of a unified benchmark hinders current RFT-based red teaming methods. Implementation details, especially in Proximal Policy Optimization (PPO)-based RFT, significantly affect outcome stability and reproducibility. To address this issue, we introduce RedRFT, a lightweight benchmark designed to simplify and standardize the implementation and evaluation of RFT-based red teaming. RedRFT combines the design strengths of both single-file CleanRL and highly modularized Tianshou, offering high-quality single-file red teaming implementations and modular PPO core components, such as the General Advantage Estimator. It supports a variety of token and sentence diversity metrics, featuring modularized intrinsic reward computation that facilitates plug-and-play experimentation. To clarify their influence on RFT performance, we conducted an extensive ablation study on key components, including Low-Rank Adaptation (LoRA), Kullback-Leibler (KL) divergence, and Lagrange Multiplier. We hope this work contributes to 1) gaining a comprehensive understanding of the implementation nuances of RFT-based red teaming algorithms, and 2) enabling rapid prototyping of innovative features for RFT-based red teaming. Code for the benchmark can be accessed at https://github.com/x-zheng16/RedRFT.git.
Abstract:Large language models (LLMs) have achieved remarkable capabilities but remain vulnerable to adversarial prompts known as jailbreaks, which can bypass safety alignment and elicit harmful outputs. Despite growing efforts in LLM safety research, existing evaluations are often fragmented, focused on isolated attack or defense techniques, and lack systematic, reproducible analysis. In this work, we introduce PandaGuard, a unified and modular framework that models LLM jailbreak safety as a multi-agent system comprising attackers, defenders, and judges. Our framework implements 19 attack methods and 12 defense mechanisms, along with multiple judgment strategies, all within a flexible plugin architecture supporting diverse LLM interfaces, multiple interaction modes, and configuration-driven experimentation that enhances reproducibility and practical deployment. Built on this framework, we develop PandaBench, a comprehensive benchmark that evaluates the interactions between these attack/defense methods across 49 LLMs and various judgment approaches, requiring over 3 billion tokens to execute. Our extensive evaluation reveals key insights into model vulnerabilities, defense cost-performance trade-offs, and judge consistency. We find that no single defense is optimal across all dimensions and that judge disagreement introduces nontrivial variance in safety assessments. We release the code, configurations, and evaluation results to support transparent and reproducible research in LLM safety.
Abstract:The rapid advancement of large Vision-Language Models (VLMs) has raised significant safety concerns, particularly regarding their vulnerability to jailbreak attacks. While existing research primarily focuses on VLMs' susceptibility to harmful instructions, this work identifies a critical yet overlooked vulnerability: current alignment mechanisms often fail to address the risks posed by toxic text continuation tasks. To investigate this issue, we propose a novel Red Team Diffuser (RTD) framework, which leverages reinforcement learning to generate red team images that effectively induce highly toxic continuations from target black-box VLMs. The RTD pipeline begins with a greedy search for high-quality image prompts that maximize the toxicity of VLM-generated sentence continuations, guided by a Large Language Model (LLM). These prompts are then used as input for the reinforcement fine-tuning of a diffusion model, which employs toxicity and alignment rewards to further amplify harmful outputs. Experimental results demonstrate the effectiveness of RTD, increasing the toxicity rate of LLaVA outputs by 10.69% on the original attack set and 8.91% on a hold-out set. Moreover, RTD exhibits strong cross-model transferability, raising the toxicity rate by 5.1% on Gemini and 26.83% on LLaMA. These findings reveal significant deficiencies in existing alignment strategies, particularly their inability to prevent harmful continuations. Our work underscores the urgent need for more robust and adaptive alignment mechanisms to ensure the safe deployment of VLMs in real-world applications.
Abstract:This is the arxiv version for our paper submitted to IEEE/RSJ IROS 2025. We propose a scene-agnostic and light-weight visual relocalization framework that leverages semantically labeled 3D lines as a compact map representation. In our framework, the robot localizes itself by capturing a single image, extracting 2D lines, associating them with semantically similar 3D lines in the map, and solving a robust perspective-n-line problem. To address the extremely high outlier ratios~(exceeding 99.5\%) caused by one-to-many ambiguities in semantic matching, we introduce the Saturated Consensus Maximization~(Sat-CM) formulation, which enables accurate pose estimation when the classic Consensus Maximization framework fails. We further propose a fast global solver to the formulated Sat-CM problems, leveraging rigorous interval analysis results to ensure both accuracy and computational efficiency. Additionally, we develop a pipeline for constructing semantic 3D line maps using posed depth images. To validate the effectiveness of our framework, which integrates our innovations in robust estimation and practical engineering insights, we conduct extensive experiments on the ScanNet++ dataset.
Abstract:Battery Life Prediction (BLP), which relies on time series data produced by battery degradation tests, is crucial for battery utilization, optimization, and production. Despite impressive advancements, this research area faces three key challenges. Firstly, the limited size of existing datasets impedes insights into modern battery life data. Secondly, most datasets are restricted to small-capacity lithium-ion batteries tested under a narrow range of diversity in labs, raising concerns about the generalizability of findings. Thirdly, inconsistent and limited benchmarks across studies obscure the effectiveness of baselines and leave it unclear if models popular in other time series fields are effective for BLP. To address these challenges, we propose BatteryLife, a comprehensive dataset and benchmark for BLP. BatteryLife integrates 16 datasets, offering a 2.4 times sample size compared to the previous largest dataset, and provides the most diverse battery life resource with batteries from 8 formats, 80 chemical systems, 12 operating temperatures, and 646 charge/discharge protocols, including both laboratory and industrial tests. Notably, BatteryLife is the first to release battery life datasets of zinc-ion batteries, sodium-ion batteries, and industry-tested large-capacity lithium-ion batteries. With the comprehensive dataset, we revisit the effectiveness of baselines popular in this and other time series fields. Furthermore, we propose CyclePatch, a plug-in technique that can be employed in a series of neural networks. Extensive benchmarking of 18 methods reveals that models popular in other time series fields can be unsuitable for BLP, and CyclePatch consistently improves model performance establishing state-of-the-art benchmarks. Moreover, BatteryLife evaluates model performance across aging conditions and domains. BatteryLife is available at https://github.com/Ruifeng-Tan/BatteryLife.
Abstract:Auditing Large Language Models (LLMs) is a crucial and challenging task. In this study, we focus on auditing black-box LLMs without access to their parameters, only to the provided service. We treat this type of auditing as a black-box optimization problem where the goal is to automatically uncover input-output pairs of the target LLMs that exhibit illegal, immoral, or unsafe behaviors. For instance, we may seek a non-toxic input that the target LLM responds to with a toxic output or an input that induces the hallucinative response from the target LLM containing politically sensitive individuals. This black-box optimization is challenging due to the scarcity of feasible points, the discrete nature of the prompt space, and the large search space. To address these challenges, we propose Curiosity-Driven Auditing for Large Language Models (CALM), which uses intrinsically motivated reinforcement learning to finetune an LLM as the auditor agent to uncover potential harmful and biased input-output pairs of the target LLM. CALM successfully identifies derogatory completions involving celebrities and uncovers inputs that elicit specific names under the black-box setting. This work offers a promising direction for auditing black-box LLMs. Our code is available at https://github.com/x-zheng16/CALM.git.
Abstract:Simulating and controlling physical systems described by partial differential equations (PDEs) are crucial tasks across science and engineering. Recently, diffusion generative models have emerged as a competitive class of methods for these tasks due to their ability to capture long-term dependencies and model high-dimensional states. However, diffusion models typically struggle with handling system states with abrupt changes and generalizing to higher resolutions. In this work, we propose Wavelet Diffusion Neural Operator (WDNO), a novel PDE simulation and control framework that enhances the handling of these complexities. WDNO comprises two key innovations. Firstly, WDNO performs diffusion-based generative modeling in the wavelet domain for the entire trajectory to handle abrupt changes and long-term dependencies effectively. Secondly, to address the issue of poor generalization across different resolutions, which is one of the fundamental tasks in modeling physical systems, we introduce multi-resolution training. We validate WDNO on five physical systems, including 1D advection equation, three challenging physical systems with abrupt changes (1D Burgers' equation, 1D compressible Navier-Stokes equation and 2D incompressible fluid), and a real-world dataset ERA5, which demonstrates superior performance on both simulation and control tasks over state-of-the-art methods, with significant improvements in long-term and detail prediction accuracy. Remarkably, in the challenging context of the 2D high-dimensional and indirect control task aimed at reducing smoke leakage, WDNO reduces the leakage by 33.2% compared to the second-best baseline.
Abstract:Despite their superb multimodal capabilities, Vision-Language Models (VLMs) have been shown to be vulnerable to jailbreak attacks, which are inference-time attacks that induce the model to output harmful responses with tricky prompts. It is thus essential to defend VLMs against potential jailbreaks for their trustworthy deployment in real-world applications. In this work, we focus on black-box defense for VLMs against jailbreak attacks. Existing black-box defense methods are either unimodal or bimodal. Unimodal methods enhance either the vision or language module of the VLM, while bimodal methods robustify the model through text-image representation realignment. However, these methods suffer from two limitations: 1) they fail to fully exploit the cross-modal information, or 2) they degrade the model performance on benign inputs. To address these limitations, we propose a novel blue-team method BlueSuffix that defends the black-box target VLM against jailbreak attacks without compromising its performance. BlueSuffix includes three key components: 1) a visual purifier against jailbreak images, 2) a textual purifier against jailbreak texts, and 3) a blue-team suffix generator fine-tuned via reinforcement learning for enhancing cross-modal robustness. We empirically show on three VLMs (LLaVA, MiniGPT-4, and Gemini) and two safety benchmarks (MM-SafetyBench and RedTeam-2K) that BlueSuffix outperforms the baseline defenses by a significant margin. Our BlueSuffix opens up a promising direction for defending VLMs against jailbreak attacks.
Abstract:The control problems of complex physical systems have wide applications in science and engineering. Several previous works have demonstrated that generative control methods based on diffusion models have significant advantages for solving these problems. However, existing generative control methods face challenges in handling closed-loop control, which is an inherent constraint for effective control of complex physical systems. In this paper, we propose a Closed-Loop Diffusion method for Physical systems Control (CL-DiffPhyCon). By adopting an asynchronous denoising schedule for different time steps, CL-DiffPhyCon generates control signals conditioned on real-time feedback from the environment. Thus, CL-DiffPhyCon is able to speed up diffusion control methods in a closed-loop framework. We evaluate CL-DiffPhyCon on the 1D Burgers' equation control and 2D incompressible fluid control tasks. The results demonstrate that CL-DiffPhyCon achieves notable control performance with significant sampling acceleration.