Abstract:The rapid advancement of large Vision-Language Models (VLMs) has raised significant safety concerns, particularly regarding their vulnerability to jailbreak attacks. While existing research primarily focuses on VLMs' susceptibility to harmful instructions, this work identifies a critical yet overlooked vulnerability: current alignment mechanisms often fail to address the risks posed by toxic text continuation tasks. To investigate this issue, we propose a novel Red Team Diffuser (RTD) framework, which leverages reinforcement learning to generate red team images that effectively induce highly toxic continuations from target black-box VLMs. The RTD pipeline begins with a greedy search for high-quality image prompts that maximize the toxicity of VLM-generated sentence continuations, guided by a Large Language Model (LLM). These prompts are then used as input for the reinforcement fine-tuning of a diffusion model, which employs toxicity and alignment rewards to further amplify harmful outputs. Experimental results demonstrate the effectiveness of RTD, increasing the toxicity rate of LLaVA outputs by 10.69% on the original attack set and 8.91% on a hold-out set. Moreover, RTD exhibits strong cross-model transferability, raising the toxicity rate by 5.1% on Gemini and 26.83% on LLaMA. These findings reveal significant deficiencies in existing alignment strategies, particularly their inability to prevent harmful continuations. Our work underscores the urgent need for more robust and adaptive alignment mechanisms to ensure the safe deployment of VLMs in real-world applications.
Abstract:This is the arxiv version for our paper submitted to IEEE/RSJ IROS 2025. We propose a scene-agnostic and light-weight visual relocalization framework that leverages semantically labeled 3D lines as a compact map representation. In our framework, the robot localizes itself by capturing a single image, extracting 2D lines, associating them with semantically similar 3D lines in the map, and solving a robust perspective-n-line problem. To address the extremely high outlier ratios~(exceeding 99.5\%) caused by one-to-many ambiguities in semantic matching, we introduce the Saturated Consensus Maximization~(Sat-CM) formulation, which enables accurate pose estimation when the classic Consensus Maximization framework fails. We further propose a fast global solver to the formulated Sat-CM problems, leveraging rigorous interval analysis results to ensure both accuracy and computational efficiency. Additionally, we develop a pipeline for constructing semantic 3D line maps using posed depth images. To validate the effectiveness of our framework, which integrates our innovations in robust estimation and practical engineering insights, we conduct extensive experiments on the ScanNet++ dataset.
Abstract:Battery Life Prediction (BLP), which relies on time series data produced by battery degradation tests, is crucial for battery utilization, optimization, and production. Despite impressive advancements, this research area faces three key challenges. Firstly, the limited size of existing datasets impedes insights into modern battery life data. Secondly, most datasets are restricted to small-capacity lithium-ion batteries tested under a narrow range of diversity in labs, raising concerns about the generalizability of findings. Thirdly, inconsistent and limited benchmarks across studies obscure the effectiveness of baselines and leave it unclear if models popular in other time series fields are effective for BLP. To address these challenges, we propose BatteryLife, a comprehensive dataset and benchmark for BLP. BatteryLife integrates 16 datasets, offering a 2.4 times sample size compared to the previous largest dataset, and provides the most diverse battery life resource with batteries from 8 formats, 80 chemical systems, 12 operating temperatures, and 646 charge/discharge protocols, including both laboratory and industrial tests. Notably, BatteryLife is the first to release battery life datasets of zinc-ion batteries, sodium-ion batteries, and industry-tested large-capacity lithium-ion batteries. With the comprehensive dataset, we revisit the effectiveness of baselines popular in this and other time series fields. Furthermore, we propose CyclePatch, a plug-in technique that can be employed in a series of neural networks. Extensive benchmarking of 18 methods reveals that models popular in other time series fields can be unsuitable for BLP, and CyclePatch consistently improves model performance establishing state-of-the-art benchmarks. Moreover, BatteryLife evaluates model performance across aging conditions and domains. BatteryLife is available at https://github.com/Ruifeng-Tan/BatteryLife.
Abstract:Auditing Large Language Models (LLMs) is a crucial and challenging task. In this study, we focus on auditing black-box LLMs without access to their parameters, only to the provided service. We treat this type of auditing as a black-box optimization problem where the goal is to automatically uncover input-output pairs of the target LLMs that exhibit illegal, immoral, or unsafe behaviors. For instance, we may seek a non-toxic input that the target LLM responds to with a toxic output or an input that induces the hallucinative response from the target LLM containing politically sensitive individuals. This black-box optimization is challenging due to the scarcity of feasible points, the discrete nature of the prompt space, and the large search space. To address these challenges, we propose Curiosity-Driven Auditing for Large Language Models (CALM), which uses intrinsically motivated reinforcement learning to finetune an LLM as the auditor agent to uncover potential harmful and biased input-output pairs of the target LLM. CALM successfully identifies derogatory completions involving celebrities and uncovers inputs that elicit specific names under the black-box setting. This work offers a promising direction for auditing black-box LLMs. Our code is available at https://github.com/x-zheng16/CALM.git.
Abstract:Simulating and controlling physical systems described by partial differential equations (PDEs) are crucial tasks across science and engineering. Recently, diffusion generative models have emerged as a competitive class of methods for these tasks due to their ability to capture long-term dependencies and model high-dimensional states. However, diffusion models typically struggle with handling system states with abrupt changes and generalizing to higher resolutions. In this work, we propose Wavelet Diffusion Neural Operator (WDNO), a novel PDE simulation and control framework that enhances the handling of these complexities. WDNO comprises two key innovations. Firstly, WDNO performs diffusion-based generative modeling in the wavelet domain for the entire trajectory to handle abrupt changes and long-term dependencies effectively. Secondly, to address the issue of poor generalization across different resolutions, which is one of the fundamental tasks in modeling physical systems, we introduce multi-resolution training. We validate WDNO on five physical systems, including 1D advection equation, three challenging physical systems with abrupt changes (1D Burgers' equation, 1D compressible Navier-Stokes equation and 2D incompressible fluid), and a real-world dataset ERA5, which demonstrates superior performance on both simulation and control tasks over state-of-the-art methods, with significant improvements in long-term and detail prediction accuracy. Remarkably, in the challenging context of the 2D high-dimensional and indirect control task aimed at reducing smoke leakage, WDNO reduces the leakage by 33.2% compared to the second-best baseline.
Abstract:Despite their superb multimodal capabilities, Vision-Language Models (VLMs) have been shown to be vulnerable to jailbreak attacks, which are inference-time attacks that induce the model to output harmful responses with tricky prompts. It is thus essential to defend VLMs against potential jailbreaks for their trustworthy deployment in real-world applications. In this work, we focus on black-box defense for VLMs against jailbreak attacks. Existing black-box defense methods are either unimodal or bimodal. Unimodal methods enhance either the vision or language module of the VLM, while bimodal methods robustify the model through text-image representation realignment. However, these methods suffer from two limitations: 1) they fail to fully exploit the cross-modal information, or 2) they degrade the model performance on benign inputs. To address these limitations, we propose a novel blue-team method BlueSuffix that defends the black-box target VLM against jailbreak attacks without compromising its performance. BlueSuffix includes three key components: 1) a visual purifier against jailbreak images, 2) a textual purifier against jailbreak texts, and 3) a blue-team suffix generator fine-tuned via reinforcement learning for enhancing cross-modal robustness. We empirically show on three VLMs (LLaVA, MiniGPT-4, and Gemini) and two safety benchmarks (MM-SafetyBench and RedTeam-2K) that BlueSuffix outperforms the baseline defenses by a significant margin. Our BlueSuffix opens up a promising direction for defending VLMs against jailbreak attacks.
Abstract:The control problems of complex physical systems have wide applications in science and engineering. Several previous works have demonstrated that generative control methods based on diffusion models have significant advantages for solving these problems. However, existing generative control methods face challenges in handling closed-loop control, which is an inherent constraint for effective control of complex physical systems. In this paper, we propose a Closed-Loop Diffusion method for Physical systems Control (CL-DiffPhyCon). By adopting an asynchronous denoising schedule for different time steps, CL-DiffPhyCon generates control signals conditioned on real-time feedback from the environment. Thus, CL-DiffPhyCon is able to speed up diffusion control methods in a closed-loop framework. We evaluate CL-DiffPhyCon on the 1D Burgers' equation control and 2D incompressible fluid control tasks. The results demonstrate that CL-DiffPhyCon achieves notable control performance with significant sampling acceleration.
Abstract:This paper investigates two fundamental problems that arise when utilizing Intrinsic Motivation (IM) for reinforcement learning in Reward-Free Pre-Training (RFPT) tasks and Exploration with Intrinsic Motivation (EIM) tasks: 1) how to design an effective intrinsic objective in RFPT tasks, and 2) how to reduce the bias introduced by the intrinsic objective in EIM tasks. Existing IM methods suffer from static skills, limited state coverage, sample inefficiency in RFPT tasks, and suboptimality in EIM tasks. To tackle these problems, we propose \emph{Constrained Intrinsic Motivation (CIM)} for RFPT and EIM tasks, respectively: 1) CIM for RFPT maximizes the lower bound of the conditional state entropy subject to an alignment constraint on the state encoder network for efficient dynamic and diverse skill discovery and state coverage maximization; 2) CIM for EIM leverages constrained policy optimization to adaptively adjust the coefficient of the intrinsic objective to mitigate the distraction from the intrinsic objective. In various MuJoCo robotics environments, we empirically show that CIM for RFPT greatly surpasses fifteen IM methods for unsupervised skill discovery in terms of skill diversity, state coverage, and fine-tuning performance. Additionally, we showcase the effectiveness of CIM for EIM in redeeming intrinsic rewards when task rewards are exposed from the beginning. Our code is available at https://github.com/x-zheng16/CIM.
Abstract:Reinforcement learning (RL) agents are known to be vulnerable to evasion attacks during deployment. In single-agent environments, attackers can inject imperceptible perturbations on the policy or value network's inputs or outputs; in multi-agent environments, attackers can control an adversarial opponent to indirectly influence the victim's observation. Adversarial policies offer a promising solution to craft such attacks. Still, current approaches either require perfect or partial knowledge of the victim policy or suffer from sample inefficiency due to the sparsity of task-related rewards. To overcome these limitations, we propose the Intrinsically Motivated Adversarial Policy (IMAP) for efficient black-box evasion attacks in single- and multi-agent environments without any knowledge of the victim policy. IMAP uses four intrinsic objectives based on state coverage, policy coverage, risk, and policy divergence to encourage exploration and discover stronger attacking skills. We also design a novel Bias-Reduction (BR) method to boost IMAP further. Our experiments demonstrate the effectiveness of these intrinsic objectives and BR in improving adversarial policy learning in the black-box setting against multiple types of victim agents in various single- and multi-agent MuJoCo environments. Notably, our IMAP reduces the performance of the state-of-the-art robust WocaR-PPO agents by 34\%-54\% and achieves a SOTA attacking success rate of 83.91\% in the two-player zero-sum game YouShallNotPass.
Abstract:Symmetric bi-manual manipulation is essential for various on-orbit operations due to its potent load capacity. As a result, there exists an emerging research interest in the problem of achieving high operation accuracy while enhancing adaptability and compliance. However, previous works relied on an inefficient algorithm framework that separates motion planning from compliant control. Additionally, the compliant controller lacks robustness due to manually adjusted parameters. This paper proposes a novel Learning-based Adaptive Compliance algorithm (LAC) that improves the efficiency and robustness of symmetric bi-manual manipulation. Specifically, first, the algorithm framework combines desired trajectory generation with impedance-parameter adjustment to improve efficiency and robustness. Second, we introduce a centralized Actor-Critic framework with LSTM networks, enhancing the synchronization of bi-manual manipulation. LSTM networks pre-process the force states obtained by the agents, further ameliorating the performance of compliance operations. When evaluated in the dual-arm cooperative handling and peg-in-hole assembly experiments, our method outperforms baseline algorithms in terms of optimality and robustness.