MIT
Abstract:Simulating and controlling physical systems described by partial differential equations (PDEs) are crucial tasks across science and engineering. Recently, diffusion generative models have emerged as a competitive class of methods for these tasks due to their ability to capture long-term dependencies and model high-dimensional states. However, diffusion models typically struggle with handling system states with abrupt changes and generalizing to higher resolutions. In this work, we propose Wavelet Diffusion Neural Operator (WDNO), a novel PDE simulation and control framework that enhances the handling of these complexities. WDNO comprises two key innovations. Firstly, WDNO performs diffusion-based generative modeling in the wavelet domain for the entire trajectory to handle abrupt changes and long-term dependencies effectively. Secondly, to address the issue of poor generalization across different resolutions, which is one of the fundamental tasks in modeling physical systems, we introduce multi-resolution training. We validate WDNO on five physical systems, including 1D advection equation, three challenging physical systems with abrupt changes (1D Burgers' equation, 1D compressible Navier-Stokes equation and 2D incompressible fluid), and a real-world dataset ERA5, which demonstrates superior performance on both simulation and control tasks over state-of-the-art methods, with significant improvements in long-term and detail prediction accuracy. Remarkably, in the challenging context of the 2D high-dimensional and indirect control task aimed at reducing smoke leakage, WDNO reduces the leakage by 33.2% compared to the second-best baseline.
Abstract:Multiphysics simulation, which models the interactions between multiple physical processes, and multi-component simulation of complex structures are critical in fields like nuclear and aerospace engineering. Previous studies often rely on numerical solvers or machine learning-based surrogate models to solve or accelerate these simulations. However, multiphysics simulations typically require integrating multiple specialized solvers-each responsible for evolving a specific physical process-into a coupled program, which introduces significant development challenges. Furthermore, no universal algorithm exists for multi-component simulations, which adds to the complexity. Here we propose compositional Multiphysics and Multi-component Simulation with Diffusion models (MultiSimDiff) to overcome these challenges. During diffusion-based training, MultiSimDiff learns energy functions modeling the conditional probability of one physical process/component conditioned on other processes/components. In inference, MultiSimDiff generates coupled multiphysics solutions and multi-component structures by sampling from the joint probability distribution, achieved by composing the learned energy functions in a structured way. We test our method in three tasks. In the reaction-diffusion and nuclear thermal coupling problems, MultiSimDiff successfully predicts the coupling solution using decoupled data, while the surrogate model fails in the more complex second problem. For the thermal and mechanical analysis of the prismatic fuel element, MultiSimDiff trained for single component prediction accurately predicts a larger structure with 64 components, reducing the relative error by 40.3% compared to the surrogate model.
Abstract:This paper explores the recent advancements in enhancing Computational Fluid Dynamics (CFD) tasks through Machine Learning (ML) techniques. We begin by introducing fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles ML plays in improving CFD. The literature systematically reviews papers in recent five years and introduces a novel classification for forward modeling: Data-driven Surrogates, Physics-Informed Surrogates, and ML-assisted Numerical Solutions. Furthermore, we also review the latest ML methods in inverse design and control, offering a novel classification and providing an in-depth discussion. Then we highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling. Besides, we identify key challenges and advocate for future research directions to address these challenges, such as multi-scale representation, physical knowledge encoding, scientific foundation model and automatic scientific discovery. This review serves as a guide for the rapidly expanding ML for CFD community, aiming to inspire insights for future advancements. We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics. The paper resources can be viewed at https://github.com/WillDreamer/Awesome-AI4CFD.
Abstract:The control problems of complex physical systems have wide applications in science and engineering. Several previous works have demonstrated that generative control methods based on diffusion models have significant advantages for solving these problems. However, existing generative control methods face challenges in handling closed-loop control, which is an inherent constraint for effective control of complex physical systems. In this paper, we propose a Closed-Loop Diffusion method for Physical systems Control (CL-DiffPhyCon). By adopting an asynchronous denoising schedule for different time steps, CL-DiffPhyCon generates control signals conditioned on real-time feedback from the environment. Thus, CL-DiffPhyCon is able to speed up diffusion control methods in a closed-loop framework. We evaluate CL-DiffPhyCon on the 1D Burgers' equation control and 2D incompressible fluid control tasks. The results demonstrate that CL-DiffPhyCon achieves notable control performance with significant sampling acceleration.
Abstract:Controlling the evolution of complex physical systems is a fundamental task across science and engineering. Classical techniques suffer from limited applicability or huge computational costs. On the other hand, recent deep learning and reinforcement learning-based approaches often struggle to optimize long-term control sequences under the constraints of system dynamics. In this work, we introduce Diffusion Physical systems Control (DiffPhyCon), a new class of method to address the physical systems control problem. DiffPhyCon excels by simultaneously minimizing both the learned generative energy function and the predefined control objectives across the entire trajectory and control sequence. Thus, it can explore globally and identify near-optimal control sequences. Moreover, we enhance DiffPhyCon with prior reweighting, enabling the discovery of control sequences that significantly deviate from the training distribution. We test our method in 1D Burgers' equation and 2D jellyfish movement control in a fluid environment. Our method outperforms widely applied classical approaches and state-of-the-art deep learning and reinforcement learning methods. Notably, DiffPhyCon unveils an intriguing fast-close-slow-open pattern observed in the jellyfish, aligning with established findings in the field of fluid dynamics.
Abstract:Nobel laureate Philip Anderson and Elihu Abrahams once stated that, "even if machines did contribute to normal science, we see no mechanism by which they could create a Kuhnian revolution and thereby establish a new physical law." In this Perspective, we draw upon insights from the philosophies of science and artificial intelligence (AI) to propose necessary conditions of precisely such a mechanism for generating revolutionary mathematical theories. Recent advancements in AI suggest that satisfying the proposed necessary conditions by machines may be plausible; thus, our proposed necessary conditions also define a moonshot challenge. We also propose a heuristic definition of the intelligibility of mathematical theories to accelerate the development of machine theorists.
Abstract:This paper focuses on the integration of generative techniques into spatial-temporal data mining, considering the significant growth and diverse nature of spatial-temporal data. With the advancements in RNNs, CNNs, and other non-generative techniques, researchers have explored their application in capturing temporal and spatial dependencies within spatial-temporal data. However, the emergence of generative techniques such as LLMs, SSL, Seq2Seq and diffusion models has opened up new possibilities for enhancing spatial-temporal data mining further. The paper provides a comprehensive analysis of generative technique-based spatial-temporal methods and introduces a standardized framework specifically designed for the spatial-temporal data mining pipeline. By offering a detailed review and a novel taxonomy of spatial-temporal methodology utilizing generative techniques, the paper enables a deeper understanding of the various techniques employed in this field. Furthermore, the paper highlights promising future research directions, urging researchers to delve deeper into spatial-temporal data mining. It emphasizes the need to explore untapped opportunities and push the boundaries of knowledge to unlock new insights and improve the effectiveness and efficiency of spatial-temporal data mining. By integrating generative techniques and providing a standardized framework, the paper contributes to advancing the field and encourages researchers to explore the vast potential of generative techniques in spatial-temporal data mining.
Abstract:Deep learning-based surrogate models have demonstrated remarkable advantages over classical solvers in terms of speed, often achieving speedups of 10 to 1000 times over traditional partial differential equation (PDE) solvers. However, a significant challenge hindering their widespread adoption in both scientific and industrial domains is the lack of understanding about their prediction uncertainties, particularly in scenarios that involve critical decision making. To address this limitation, we propose a method that integrates efficient and precise uncertainty quantification into a deep learning-based surrogate model. Our method, termed Latent Evolution of PDEs with Uncertainty Quantification (LE-PDE-UQ), endows deep learning-based surrogate models with robust and efficient uncertainty quantification capabilities for both forward and inverse problems. LE-PDE-UQ leverages latent vectors within a latent space to evolve both the system's state and its corresponding uncertainty estimation. The latent vectors are decoded to provide predictions for the system's state as well as estimates of its uncertainty. In extensive experiments, we demonstrate the accurate uncertainty quantification performance of our approach, surpassing that of strong baselines including deep ensembles, Bayesian neural network layers, and dropout. Our method excels at propagating uncertainty over extended auto-regressive rollouts, making it suitable for scenarios involving long-term predictions. Our code is available at: https://github.com/AI4Science-WestlakeU/le-pde-uq.
Abstract:Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem that arises across fields such as mechanical engineering to aerospace engineering. Inverse design is typically formulated as an optimization problem, with recent works leveraging optimization across learned dynamics models. However, as models are optimized they tend to fall into adversarial modes, preventing effective sampling. We illustrate that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples and significantly improve design performance. We further illustrate how such a design system is compositional, enabling us to combine multiple different diffusion models representing subcomponents of our desired system to design systems with every specified component. In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes that are more complex than those in the training data. Our method outperforms state-of-the-art neural inverse design method by an average of 41.5% in prediction MAE and 14.3% in design objective for the N-body dataset and discovers formation flying to minimize drag in the multi-airfoil design task. Project website and code can be found at https://github.com/AI4Science-WestlakeU/cindm.
Abstract:Elliptic partial differential equations (PDEs) are a major class of time-independent PDEs that play a key role in many scientific and engineering domains such as fluid dynamics, plasma physics, and solid mechanics. Recently, neural operators have emerged as a promising technique to solve elliptic PDEs more efficiently by directly mapping the input to solutions. However, existing networks typically cannot handle complex geometries and inhomogeneous boundary values present in the real world. Here we introduce Boundary-Embedded Neural Operators (BENO), a novel neural operator architecture that embeds the complex geometries and inhomogeneous boundary values into the solving of elliptic PDEs. Inspired by classical Green's function, BENO consists of two branches of Graph Neural Networks (GNNs) for interior source term and boundary values, respectively. Furthermore, a Transformer encoder maps the global boundary geometry into a latent vector which influences each message passing layer of the GNNs. We test our model extensively in elliptic PDEs with various boundary conditions. We show that all existing baseline methods fail to learn the solution operator. In contrast, our model, endowed with boundary-embedded architecture, outperforms state-of-the-art neural operators and strong baselines by an average of 60.96\%. Our source code can be found https://github.com/AI4Science-WestlakeU/beno.git.