Westlake University, Hangzhou, China
Abstract:In science and engineering, machine learning techniques are increasingly successful in physical systems modeling (predicting future states of physical systems). Effectively integrating PDE loss as a constraint of system transition can improve the model's prediction by overcoming generalization issues due to data scarcity, especially when data acquisition is costly. However, in many real-world scenarios, due to sensor limitations, the data we can obtain is often only partial observation, making the calculation of PDE loss seem to be infeasible, as the PDE loss heavily relies on high-resolution states. We carefully study this problem and propose a novel framework named Re-enable PDE Loss under Partial Observation (RPLPO). The key idea is that although enabling PDE loss to constrain system transition solely is infeasible, we can re-enable PDE loss by reconstructing the learnable high-resolution state and constraining system transition simultaneously. Specifically, RPLPO combines an encoding module for reconstructing learnable high-resolution states with a transition module for predicting future states. The two modules are jointly trained by data and PDE loss. We conduct experiments in various physical systems to demonstrate that RPLPO has significant improvement in generalization, even when observation is sparse, irregular, noisy, and PDE is inaccurate. The code is available on GitHub: RPLPO.
Abstract:Partial Differential Equations are foundational in modeling science and natural systems such as fluid dynamics and weather forecasting. The Latent Evolution of PDEs method is designed to address the computational intensity of classical and deep learning-based PDE solvers by proposing a scalable and efficient alternative. To enhance the efficiency and accuracy of LE-PDE, we incorporate the Mamba model, an advanced machine learning model known for its predictive efficiency and robustness in handling complex dynamic systems with a progressive learning strategy. The LE-PDE was tested on several benchmark problems. The method demonstrated a marked reduction in computational time compared to traditional solvers and standalone deep learning models while maintaining high accuracy in predicting system behavior over time. Our method doubles the inference speed compared to the LE-PDE while retaining the same level of parameter efficiency, making it well-suited for scenarios requiring long-term predictions.
Abstract:In the control problems of the PDE systems, observation is important to make the decision. However, the observation is generally sparse and missing in practice due to the limitation and fault of sensors. The above challenges cause observations with uncertain quantities and modalities. Therefore, how to leverage the uncertain observations as the states in control problems of the PDE systems has become a scientific problem. The dynamics of PDE systems rely on the initial conditions, boundary conditions, and PDE formula. Given the above three elements, PINNs can be used to solve the PDE systems. In this work, we discover that the neural network can also be used to identify and represent the PDE systems using PDE loss and sparse data loss. Inspired by the above discovery, we propose a Physics-Informed Representation (PIR) algorithm for multimodal policies in PDE systems' control. It leverages PDE loss to fit the neural network and data loss calculated on the observations with random quantities and modalities to propagate the information of initial conditions and boundary conditions into the inputs. The inputs can be the learnable parameters or the output of the encoders. Then, under the environments of the PDE systems, such inputs are the representation of the current state. In our experiments, the PIR illustrates the superior consistency with the features of the ground truth compared with baselines, even when there are missing modalities. Furthermore, PIR has been successfully applied in the downstream control tasks where the robot leverages the learned state by PIR faster and more accurately, passing through the complex vortex street from a random starting location to reach a random target.
Abstract:The interaction of waves with structural barriers such as dams breaking plays a critical role in flood defense and tsunami disasters. In this work, we explore the dynamic changes in wave surfaces impacting various structural shapes, e.g., circle, triangle, and square, by using deep learning techniques. We introduce the DamFormer, a novel transformer-based model designed to learn and simulate these complex interactions. The model was trained and tested on simulated data representing the three structural forms.
Abstract:Reinforcement learning-based quadruped robots excel across various terrains but still lack the ability to swim in water due to the complex underwater environment. This paper presents the development and evaluation of a data-driven hydrodynamic model for amphibious quadruped robots, aiming to enhance their adaptive capabilities in complex and dynamic underwater environments. The proposed model leverages Neural Ordinary Differential Equations (ODEs) combined with attention mechanisms to accurately process and interpret real-time sensor data. The model enables the quadruped robots to understand and predict complex environmental patterns, facilitating robust decision-making strategies. We harness real-time sensor data, capturing various environmental and internal state parameters to train and evaluate our model. A significant focus of our evaluation involves testing the quadruped robot's performance across different hydrodynamic conditions and assessing its capabilities at varying speeds and fluid dynamic conditions. The outcomes suggest that the model can effectively learn and adapt to varying conditions, enabling the prediction of force states and enhancing autonomous robotic behaviors in various practical scenarios.
Abstract:The control problems of complex physical systems have wide applications in science and engineering. Several previous works have demonstrated that generative control methods based on diffusion models have significant advantages for solving these problems. However, existing generative control methods face challenges in handling closed-loop control, which is an inherent constraint for effective control of complex physical systems. In this paper, we propose a Closed-Loop Diffusion method for Physical systems Control (CL-DiffPhyCon). By adopting an asynchronous denoising schedule for different time steps, CL-DiffPhyCon generates control signals conditioned on real-time feedback from the environment. Thus, CL-DiffPhyCon is able to speed up diffusion control methods in a closed-loop framework. We evaluate CL-DiffPhyCon on the 1D Burgers' equation control and 2D incompressible fluid control tasks. The results demonstrate that CL-DiffPhyCon achieves notable control performance with significant sampling acceleration.
Abstract:Navigating efficiently across vortical flow fields presents a significant challenge in various robotic applications. The dynamic and unsteady nature of vortical flows often disturbs the control of underwater robots, complicating their operation in hydrodynamic environments. Conventional control methods, which depend on accurate modeling, fail in these settings due to the complexity of fluid-structure interactions (FSI) caused by unsteady hydrodynamics. This study proposes a deep reinforcement learning (DRL) algorithm, trained in a data-driven manner, to enable efficient navigation of a robotic fish swimming across vortical flows. Our proposed algorithm incorporates the LSTM architecture and uses several recent consecutive observations as the state to address the issue of partial observation, often due to sensor limitations. We present a numerical study of navigation within a Karman vortex street, created by placing a stationary cylinder in a uniform flow, utilizing the immersed boundary-lattice Boltzmann method (IB-LBM). The aim is to train the robotic fish to discover efficient navigation policies, enabling it to reach a designated target point across the Karman vortex street from various initial positions. After training, the fish demonstrates the ability to rapidly reach the target from different initial positions, showcasing the effectiveness and robustness of our proposed algorithm. Analysis of the results reveals that the robotic fish can leverage velocity gains and pressure differences induced by the vortices to reach the target, underscoring the potential of our proposed algorithm in enhancing navigation in complex hydrodynamic environments.
Abstract:Deep reinforcement learning (DRL) for fluidic pinball, three individually rotating cylinders in the uniform flow arranged in an equilaterally triangular configuration, can learn the efficient flow control strategies due to the validity of self-learning and data-driven state estimation for complex fluid dynamic problems. In this work, we present a DRL-based real-time feedback strategy to control the hydrodynamic force on fluidic pinball, i.e., force extremum and tracking, from cylinders' rotation. By adequately designing reward functions and encoding historical observations, and after automatic learning of thousands of iterations, the DRL-based control was shown to make reasonable and valid control decisions in nonparametric control parameter space, which is comparable to and even better than the optimal policy found through lengthy brute-force searching. Subsequently, one of these results was analyzed by a machine learning model that enabled us to shed light on the basis of decision-making and physical mechanisms of the force tracking process. The finding from this work can control hydrodynamic force on the operation of fluidic pinball system and potentially pave the way for exploring efficient active flow control strategies in other complex fluid dynamic problems.
Abstract:Calibration of highly dynamic multi-physics manufacturing processes such as electro-hydrodynamics-based additive manufacturing (AM) technologies (E-jet printing) is still performed by labor-intensive trial-and-error practices. These practices have hindered the broad adoption of these technologies, demanding a new paradigm of self-calibrating E-jet printing machines. To address this need, we developed GPJet, an end-to-end physics-informed Bayesian learning framework, and tested it on a virtual E-jet printing machine with in-process jet monitoring capabilities. GPJet consists of three modules: a) the Machine Vision module, b) the Physics-Based Modeling Module, and c) the Machine Learning (ML) module. We demonstrate that the Machine Vision module can extract high-fidelity jet features in real-time from video data using an automated parallelized computer vision workflow. In addition, we show that the Machine Vision module, combined with the Physics-based modeling module, can act as closed-loop sensory feedback to the Machine Learning module of high- and low-fidelity data. Powered by our data-centric approach, we demonstrate that the online ML planner can actively learn the jet process dynamics using video and physics with minimum experimental cost. GPJet brings us one step closer to realizing the vision of intelligent AM machines that can efficiently search complex process-structure-property landscapes and create optimized material solutions for a wide range of applications at a fraction of the cost and speed.
Abstract:We demonstrate experimentally the feasibility of applying reinforcement learning (RL) in flow control problems by automatically discovering active control strategies without any prior knowledge of the flow physics. We consider the turbulent flow past a circular cylinder with the aim of reducing the cylinder drag force or maximizing the power gain efficiency by properly selecting the rotational speed of two small diameter cylinders, parallel to and located downstream of the larger cylinder. Given properly designed rewards and noise reduction techniques, after tens of towing experiments, the RL agent could discover the optimal control strategy, comparable to the optimal static control. While RL has been found to be effective in recent computer flow simulation studies, this is the first time that its effectiveness is demonstrated experimentally, paving the way for exploring new optimal active flow control strategies in complex fluid mechanics applications.