UCL
Abstract:Reinforcement learning-based quadruped robots excel across various terrains but still lack the ability to swim in water due to the complex underwater environment. This paper presents the development and evaluation of a data-driven hydrodynamic model for amphibious quadruped robots, aiming to enhance their adaptive capabilities in complex and dynamic underwater environments. The proposed model leverages Neural Ordinary Differential Equations (ODEs) combined with attention mechanisms to accurately process and interpret real-time sensor data. The model enables the quadruped robots to understand and predict complex environmental patterns, facilitating robust decision-making strategies. We harness real-time sensor data, capturing various environmental and internal state parameters to train and evaluate our model. A significant focus of our evaluation involves testing the quadruped robot's performance across different hydrodynamic conditions and assessing its capabilities at varying speeds and fluid dynamic conditions. The outcomes suggest that the model can effectively learn and adapt to varying conditions, enabling the prediction of force states and enhancing autonomous robotic behaviors in various practical scenarios.
Abstract:Large Language Models (LLMs) have been increasingly used in real-world settings, yet their strategic abilities remain largely unexplored. Game theory provides a good framework for assessing the decision-making abilities of LLMs in interactions with other agents. Although prior studies have shown that LLMs can solve these tasks with carefully curated prompts, they fail when the problem setting or prompt changes. In this work we investigate LLMs' behaviour in strategic games, Stag Hunt and Prisoner Dilemma, analyzing performance variations under different settings and prompts. Our results show that the tested state-of-the-art LLMs exhibit at least one of the following systematic biases: (1) positional bias, (2) payoff bias, or (3) behavioural bias. Subsequently, we observed that the LLMs' performance drops when the game configuration is misaligned with the affecting biases. Performance is assessed based on the selection of the correct action, one which agrees with the prompted preferred behaviours of both players. Alignment refers to whether the LLM's bias aligns with the correct action. For example, GPT-4o's average performance drops by 34% when misaligned. Additionally, the current trend of "bigger and newer is better" does not hold for the above, where GPT-4o (the current best-performing LLM) suffers the most substantial performance drop. Lastly, we note that while chain-of-thought prompting does reduce the effect of the biases on most models, it is far from solving the problem at the fundamental level.
Abstract:Grounding natural language to the physical world is a ubiquitous topic with a wide range of applications in computer vision and robotics. Recently, 2D vision-language models such as CLIP have been widely popularized, due to their impressive capabilities for open-vocabulary grounding in 2D images. Recent works aim to elevate 2D CLIP features to 3D via feature distillation, but either learn neural fields that are scene-specific and hence lack generalization, or focus on indoor room scan data that require access to multiple camera views, which is not practical in robot manipulation scenarios. Additionally, related methods typically fuse features at pixel-level and assume that all camera views are equally informative. In this work, we show that this approach leads to sub-optimal 3D features, both in terms of grounding accuracy, as well as segmentation crispness. To alleviate this, we propose a multi-view feature fusion strategy that employs object-centric priors to eliminate uninformative views based on semantic information, and fuse features at object-level via instance segmentation masks. To distill our object-centric 3D features, we generate a large-scale synthetic multi-view dataset of cluttered tabletop scenes, spawning 15k scenes from over 3300 unique object instances, which we make publicly available. We show that our method reconstructs 3D CLIP features with improved grounding capacity and spatial consistency, while doing so from single-view RGB-D, thus departing from the assumption of multiple camera views at test time. Finally, we show that our approach can generalize to novel tabletop domains and be re-purposed for 3D instance segmentation without fine-tuning, and demonstrate its utility for language-guided robotic grasping in clutter
Abstract:Effective execution of long-horizon tasks with dexterous robotic hands remains a significant challenge in real-world problems. While learning from human demonstrations have shown encouraging results, they require extensive data collection for training. Hence, decomposing long-horizon tasks into reusable primitive skills is a more efficient approach. To achieve so, we developed DexSkills, a novel supervised learning framework that addresses long-horizon dexterous manipulation tasks using primitive skills. DexSkills is trained to recognize and replicate a select set of skills using human demonstration data, which can then segment a demonstrated long-horizon dexterous manipulation task into a sequence of primitive skills to achieve one-shot execution by the robot directly. Significantly, DexSkills operates solely on proprioceptive and tactile data, i.e., haptic data. Our real-world robotic experiments show that DexSkills can accurately segment skills, thereby enabling autonomous robot execution of a diverse range of tasks.
Abstract:This survey presents an overview of methods for learning from video (LfV) in the context of reinforcement learning (RL) and robotics. We focus on methods capable of scaling to large internet video datasets and, in the process, extracting foundational knowledge about the world's dynamics and physical human behaviour. Such methods hold great promise for developing general-purpose robots. We open with an overview of fundamental concepts relevant to the LfV-for-robotics setting. This includes a discussion of the exciting benefits LfV methods can offer (e.g., improved generalization beyond the available robot data) and commentary on key LfV challenges (e.g., challenges related to missing information in video and LfV distribution shifts). Our literature review begins with an analysis of video foundation model techniques that can extract knowledge from large, heterogeneous video datasets. Next, we review methods that specifically leverage video data for robot learning. Here, we categorise work according to which RL knowledge modality benefits from the use of video data. We additionally highlight techniques for mitigating LfV challenges, including reviewing action representations that address the issue of missing action labels in video. Finally, we examine LfV datasets and benchmarks, before concluding the survey by discussing challenges and opportunities in LfV. Here, we advocate for scalable approaches that can leverage the full range of available data and that target the key benefits of LfV. Overall, we hope this survey will serve as a comprehensive reference for the emerging field of LfV, catalysing further research in the area, and ultimately facilitating progress towards obtaining general-purpose robots.
Abstract:Recent advancements in reinforcement learning (RL) have led to remarkable achievements in robot locomotion capabilities. However, the complexity and ``black-box'' nature of neural network-based RL policies hinder their interpretability and broader acceptance, particularly in applications demanding high levels of safety and reliability. This paper introduces a novel approach to distill neural RL policies into more interpretable forms using Gradient Boosting Machines (GBMs), Explainable Boosting Machines (EBMs) and Symbolic Regression. By leveraging the inherent interpretability of generalized additive models, decision trees, and analytical expressions, we transform opaque neural network policies into more transparent ``glass-box'' models. We train expert neural network policies using RL and subsequently distill them into (i) GBMs, (ii) EBMs, and (iii) symbolic policies. To address the inherent distribution shift challenge of behavioral cloning, we propose to use the Dataset Aggregation (DAgger) algorithm with a curriculum of episode-dependent alternation of actions between expert and distilled policies, to enable efficient distillation of feedback control policies. We evaluate our approach on various robot locomotion gaits -- walking, trotting, bounding, and pacing -- and study the importance of different observations in joint actions for distilled policies using various methods. We train neural expert policies for 205 hours of simulated experience and distill interpretable policies with only 10 minutes of simulated interaction for each gait using the proposed method.
Abstract:We present a modular framework designed to enable a robot hand-arm system to learn how to catch flying objects, a task that requires fast, reactive, and accurately-timed robot motions. Our framework consists of five core modules: (i) an object state estimator that learns object trajectory prediction, (ii) a catching pose quality network that learns to score and rank object poses for catching, (iii) a reaching control policy trained to move the robot hand to pre-catch poses, (iv) a grasping control policy trained to perform soft catching motions for safe and robust grasping, and (v) a gating network trained to synthesize the actions given by the reaching and grasping policy. The former two modules are trained via supervised learning and the latter three use deep reinforcement learning in a simulated environment. We conduct extensive evaluations of our framework in simulation for each module and the integrated system, to demonstrate high success rates of in-flight catching and robustness to perturbations and sensory noise. Whilst only simple cylindrical and spherical objects are used for training, the integrated system shows successful generalization to a variety of household objects that are not used in training.
Abstract:Robots operating in human-centric environments require the integration of visual grounding and grasping capabilities to effectively manipulate objects based on user instructions. This work focuses on the task of referring grasp synthesis, which predicts a grasp pose for an object referred through natural language in cluttered scenes. Existing approaches often employ multi-stage pipelines that first segment the referred object and then propose a suitable grasp, and are evaluated in private datasets or simulators that do not capture the complexity of natural indoor scenes. To address these limitations, we develop a challenging benchmark based on cluttered indoor scenes from OCID dataset, for which we generate referring expressions and connect them with 4-DoF grasp poses. Further, we propose a novel end-to-end model (CROG) that leverages the visual grounding capabilities of CLIP to learn grasp synthesis directly from image-text pairs. Our results show that vanilla integration of CLIP with pretrained models transfers poorly in our challenging benchmark, while CROG achieves significant improvements both in terms of grounding and grasping. Extensive robot experiments in both simulation and hardware demonstrate the effectiveness of our approach in challenging interactive object grasping scenarios that include clutter.
Abstract:Current reinforcement learning algorithms struggle in sparse and complex environments, most notably in long-horizon manipulation tasks entailing a plethora of different sequences. In this work, we propose the Intrinsically Guided Exploration from Large Language Models (IGE-LLMs) framework. By leveraging LLMs as an assistive intrinsic reward, IGE-LLMs guides the exploratory process in reinforcement learning to address intricate long-horizon with sparse rewards robotic manipulation tasks. We evaluate our framework and related intrinsic learning methods in an environment challenged with exploration, and a complex robotic manipulation task challenged by both exploration and long-horizons. Results show IGE-LLMs (i) exhibit notably higher performance over related intrinsic methods and the direct use of LLMs in decision-making, (ii) can be combined and complement existing learning methods highlighting its modularity, (iii) are fairly insensitive to different intrinsic scaling parameters, and (iv) maintain robustness against increased levels of uncertainty and horizons.
Abstract:Understanding trajectory diversity is a fundamental aspect of addressing practical traffic tasks. However, capturing the diversity of trajectories presents challenges, particularly with traditional machine learning and recurrent neural networks due to the requirement of large-scale parameters. The emerging Transformer technology, renowned for its parallel computation capabilities enabling the utilization of models with hundreds of millions of parameters, offers a promising solution. In this study, we apply the Transformer architecture to traffic tasks, aiming to learn the diversity of trajectories within vehicle populations. We analyze the Transformer's attention mechanism and its adaptability to the goals of traffic tasks, and subsequently, design specific pre-training tasks. To achieve this, we create a data structure tailored to the attention mechanism and introduce a set of noises that correspond to spatio-temporal demands, which are incorporated into the structured data during the pre-training process. The designed pre-training model demonstrates excellent performance in capturing the spatial distribution of the vehicle population, with no instances of vehicle overlap and an RMSE of 0.6059 when compared to the ground truth values. In the context of time series prediction, approximately 95% of the predicted trajectories' speeds closely align with the true speeds, within a deviation of 7.5144m/s. Furthermore, in the stability test, the model exhibits robustness by continuously predicting a time series ten times longer than the input sequence, delivering smooth trajectories and showcasing diverse driving behaviors. The pre-trained model also provides a good basis for downstream fine-tuning tasks. The number of parameters of our model is over 50 million.