Human-Robot Interfaces and Physical Interaction
Abstract:The rapid evolution of scientific inquiry highlights an urgent need for groundbreaking methodologies that transcend the limitations of traditional research. Conventional approaches, bogged down by manual processes and siloed expertise, struggle to keep pace with the demands of modern discovery. We envision an autonomous generalist scientist (AGS) system-a fusion of agentic AI and embodied robotics-that redefines the research lifecycle. This system promises to autonomously navigate physical and digital realms, weaving together insights from disparate disciplines with unprecedented efficiency. By embedding advanced AI and robot technologies into every phase-from hypothesis formulation to peer-ready manuscripts-AGS could slash the time and resources needed for scientific research in diverse field. We foresee a future where scientific discovery follows new scaling laws, driven by the proliferation and sophistication of such systems. As these autonomous agents and robots adapt to extreme environments and leverage a growing reservoir of knowledge, they could spark a paradigm shift, pushing the boundaries of what's possible and ushering in an era of relentless innovation.
Abstract:Ensuring safety in reinforcement learning (RL)-based robotic systems is a critical challenge, especially in contact-rich tasks within unstructured environments. While the state-of-the-art safe RL approaches mitigate risks through safe exploration or high-level recovery mechanisms, they often overlook low-level execution safety, where reflexive responses to potential hazards are crucial. Similarly, variable impedance control (VIC) enhances safety by adjusting the robot's mechanical response, yet lacks a systematic way to adapt parameters, such as stiffness and damping throughout the task. In this paper, we propose Bresa, a Bio-inspired Reflexive Hierarchical Safe RL method inspired by biological reflexes. Our method decouples task learning from safety learning, incorporating a safety critic network that evaluates action risks and operates at a higher frequency than the task solver. Unlike existing recovery-based methods, our safety critic functions at a low-level control layer, allowing real-time intervention when unsafe conditions arise. The task-solving RL policy, running at a lower frequency, focuses on high-level planning (decision-making), while the safety critic ensures instantaneous safety corrections. We validate Bresa on multiple tasks including a contact-rich robotic task, demonstrating its reflexive ability to enhance safety, and adaptability in unforeseen dynamic environments. Our results show that Bresa outperforms the baseline, providing a robust and reflexive safety mechanism that bridges the gap between high-level planning and low-level execution. Real-world experiments and supplementary material are available at project website https://jack-sherman01.github.io/Bresa.
Abstract:In this work, we introduce the principle, design and mechatronics of Exo-Muscle, a novel assistive device for the knee joint. Different from the existing systems based on rigid exoskeleton structures or soft-tendon driven approaches, the proposed device leverages a new semi-rigid principle that explores the benefits of both rigid and soft systems. The use of a novel semi-rigid chain mechanism around the knee joint eliminates the presence of misalignment between the device and the knee joint center of rotation, while at the same time, it forms a well-defined route for the tendon. This results in more deterministic load compensation functionality compared to the fully soft systems. The proposed device can provide up to 38Nm assistive torque to the knee joint. In the experiment section, the device was successfully validated through a series of experiments demonstrating the capacity of the device to provide the target assistive functionality in the knee joint.
Abstract:The integration of collaborative robots into industrial environments has improved productivity, but has also highlighted significant challenges related to operator safety and ergonomics. This paper proposes an innovative framework that integrates advanced visual perception technologies, real-time ergonomic monitoring, and Behaviour Tree (BT)-based adaptive decision-making. Unlike traditional methods, which often operate in isolation or statically, our approach combines deep learning models (YOLO11 and SlowOnly), advanced tracking (Unscented Kalman Filter) and dynamic ergonomic assessments (OWAS), offering a modular, scalable and adaptive system. Experimental results show that the framework outperforms previous methods in several aspects: accuracy in detecting postures and actions, adaptivity in managing human-robot interactions, and ability to reduce ergonomic risk through timely robotic interventions. In particular, the visual perception module showed superiority over YOLOv9 and YOLOv8, while real-time ergonomic monitoring eliminated the limitations of static analysis. Adaptive role management, made possible by the Behaviour Tree, provided greater responsiveness than rule-based systems, making the framework suitable for complex industrial scenarios. Our system demonstrated a 92.5\% accuracy in grasping intention recognition and successfully classified ergonomic risks with real-time responsiveness (average latency of 0.57 seconds), enabling timely robotic
Abstract:Autonomous robot person-following (RPF) systems are crucial for personal assistance and security but suffer from target loss due to occlusions in dynamic, unknown environments. Current methods rely on pre-built maps and assume static environments, limiting their effectiveness in real-world settings. There is a critical gap in re-finding targets under topographic (e.g., walls, corners) and dynamic (e.g., moving pedestrians) occlusions. In this paper, we propose a novel heuristic-guided search framework that dynamically builds environmental maps while following the target and resolves various occlusions by prioritizing high-probability areas for locating the target. For topographic occlusions, a belief-guided search field is constructed and used to evaluate the likelihood of the target's presence, while for dynamic occlusions, a fluid-field approach allows the robot to adaptively follow or overtake moving occluders. Past motion cues and environmental observations refine the search decision over time. Our results demonstrate that the proposed method outperforms existing approaches in terms of search efficiency and success rates, both in simulations and real-world tests. Our target search method enhances the adaptability and reliability of RPF systems in unknown and dynamic environments to support their use in real-world applications. Our code, video, experimental results and appendix are available at https://medlartea.github.io/rpf-search/.
Abstract:Although robotic applications increasingly demand versatile and dynamic object handling, most existing techniques are predominantly focused on grasp-based manipulation, limiting their applicability in non-prehensile tasks. To address this need, this study introduces a Deep Deterministic Policy Gradient (DDPG) reinforcement learning framework for efficient non-prehensile manipulation, specifically for sliding an object on a surface. The algorithm generates a linear trajectory by precisely controlling the acceleration of a robotic arm rigidly coupled to the horizontal surface, enabling the relative manipulation of an object as it slides on top of the surface. Furthermore, two distinct algorithms have been developed to estimate the frictional forces dynamically during the sliding process. These algorithms provide online friction estimates after each action, which are fed back into the actor model as critical feedback after each action. This feedback mechanism enhances the policy's adaptability and robustness, ensuring more precise control of the platform's acceleration in response to varying surface condition. The proposed algorithm is validated through simulations and real-world experiments. Results demonstrate that the proposed framework effectively generalizes sliding manipulation across varying distances and, more importantly, adapts to different surfaces with diverse frictional properties. Notably, the trained model exhibits zero-shot sim-to-real transfer capabilities.
Abstract:Mobile manipulators are increasingly deployed in complex environments, requiring diverse sensors to perceive and interact with their surroundings. However, equipping every robot with every possible sensor is often impractical due to cost and physical constraints. A critical challenge arises when robots with differing sensor capabilities need to collaborate or perform similar tasks. For example, consider a scenario where a mobile manipulator equipped with high-resolution tactile skin is skilled at non-prehensile manipulation tasks like pushing. If this robot needs to be replaced or augmented by a robot lacking such tactile sensing, the learned manipulation policies become inapplicable. This paper addresses the problem of sensor substitution in non-prehensile manipulation. We propose a novel machine learning-based framework that enables a robot with a limited sensor set (e.g., LiDAR or RGB-D camera) to effectively perform tasks previously reliant on a richer sensor suite (e.g., tactile skin). Our approach learns a mapping between the available sensor data and the information provided by the substituted sensor, effectively synthesizing the missing sensory input. Specifically, we demonstrate the efficacy of our framework by training a model to substitute tactile skin data for the task of non-prehensile pushing using a mobile manipulator. We show that a manipulator equipped only with LiDAR or RGB-D can, after training, achieve comparable and sometimes even better pushing performance to a mobile base utilizing direct tactile feedback.
Abstract:Observational learning is a promising approach to enable people without expertise in programming to transfer skills to robots in a user-friendly manner, since it mirrors how humans learn new behaviors by observing others. Many existing methods focus on instructing robots to mimic human trajectories, but motion-level strategies often pose challenges in skills generalization across diverse environments. This paper proposes a novel framework that allows robots to achieve a \textit{higher-level} understanding of human-demonstrated manual tasks recorded in RGB videos. By recognizing the task structure and goals, robots generalize what observed to unseen scenarios. We found our task representation on Shannon's Information Theory (IT), which is applied for the first time to manual tasks. IT helps extract the active scene elements and quantify the information shared between hands and objects. We exploit scene graph properties to encode the extracted interaction features in a compact structure and segment the demonstration into blocks, streamlining the generation of Behavior Trees for robot replicas. Experiments validated the effectiveness of IT to automatically generate robot execution plans from a single human demonstration. Additionally, we provide HANDSOME, an open-source dataset of HAND Skills demOnstrated by Multi-subjEcts, to promote further research and evaluation in this field.
Abstract:Despite impressive advancements of industrial collaborative robots, their potential remains largely untapped due to the difficulty in balancing human safety and comfort with fast production constraints. To help address this challenge, we present PRO-MIND, a novel human-in-the-loop framework that leverages valuable data about the human co-worker to optimise robot trajectories. By estimating human attention and mental effort, our method dynamically adjusts safety zones and enables on-the-fly alterations of the robot path to enhance human comfort and optimal stopping conditions. Moreover, we formulate a multi-objective optimisation to adapt the robot's trajectory execution time and smoothness based on the current human psycho-physical stress, estimated from heart rate variability and frantic movements. These adaptations exploit the properties of B-spline curves to preserve continuity and smoothness, which are crucial factors in improving motion predictability and comfort. Evaluation in two realistic case studies showcases the framework's ability to restrain the operators' workload and stress and to ensure their safety while enhancing human-robot productivity. Further strengths of PRO-MIND include its adaptability to each individual's specific needs and sensitivity to variations in attention, mental effort, and stress during task execution.
Abstract:Reinforcement learning (RL) has emerged as a promising paradigm in complex and continuous robotic tasks, however, safe exploration has been one of the main challenges, especially in contact-rich manipulation tasks in unstructured environments. Focusing on this issue, we propose SRL-VIC: a model-free safe RL framework combined with a variable impedance controller (VIC). Specifically, safety critic and recovery policy networks are pre-trained where safety critic evaluates the safety of the next action using a risk value before it is executed and the recovery policy suggests a corrective action if the risk value is high. Furthermore, the policies are updated online where the task policy not only achieves the task but also modulates the stiffness parameters to keep a safe and compliant profile. A set of experiments in contact-rich maze tasks demonstrate that our framework outperforms the baselines (without the recovery mechanism and without the VIC), yielding a good trade-off between efficient task accomplishment and safety guarantee. We show our policy trained on simulation can be deployed on a physical robot without fine-tuning, achieving successful task completion with robustness and generalization. The video is available at https://youtu.be/ksWXR3vByoQ.