Abstract:Wearable devices like exoskeletons are designed to reduce excessive loads on specific joints of the body. Specifically, single- or two-degrees-of-freedom (DOF) upper-body industrial exoskeletons typically focus on compensating for the strain on the elbow and shoulder joints. However, during daily activities, there is no assurance that external loads are correctly aligned with the supported joints. Optimizing work processes to ensure that external loads are primarily (to the extent that they can be compensated by the exoskeleton) directed onto the supported joints can significantly enhance the overall usability of these devices and the ergonomics of their users. Collaborative robots (cobots) can play a role in this optimization, complementing the collaborative aspects of human work. In this study, we propose an adaptive and coordinated control system for the human-cobot-exoskeleton interaction. This system adjusts the task coordinates to maximize the utilization of the supported joints. When the torque limits of the exoskeleton are exceeded, the framework continuously adapts the task frame, redistributing excessive loads to non-supported body joints to prevent overloading the supported ones. We validated our approach in an equivalent industrial painting task involving a single-DOF elbow exoskeleton, a cobot, and four subjects, each tested in four different initial arm configurations with five distinct optimisation weight matrices and two different payloads.
Abstract:Ensuring safety in reinforcement learning (RL)-based robotic systems is a critical challenge, especially in contact-rich tasks within unstructured environments. While the state-of-the-art safe RL approaches mitigate risks through safe exploration or high-level recovery mechanisms, they often overlook low-level execution safety, where reflexive responses to potential hazards are crucial. Similarly, variable impedance control (VIC) enhances safety by adjusting the robot's mechanical response, yet lacks a systematic way to adapt parameters, such as stiffness and damping throughout the task. In this paper, we propose Bresa, a Bio-inspired Reflexive Hierarchical Safe RL method inspired by biological reflexes. Our method decouples task learning from safety learning, incorporating a safety critic network that evaluates action risks and operates at a higher frequency than the task solver. Unlike existing recovery-based methods, our safety critic functions at a low-level control layer, allowing real-time intervention when unsafe conditions arise. The task-solving RL policy, running at a lower frequency, focuses on high-level planning (decision-making), while the safety critic ensures instantaneous safety corrections. We validate Bresa on multiple tasks including a contact-rich robotic task, demonstrating its reflexive ability to enhance safety, and adaptability in unforeseen dynamic environments. Our results show that Bresa outperforms the baseline, providing a robust and reflexive safety mechanism that bridges the gap between high-level planning and low-level execution. Real-world experiments and supplementary material are available at project website https://jack-sherman01.github.io/Bresa.
Abstract:Reinforcement learning (RL) has emerged as a promising paradigm in complex and continuous robotic tasks, however, safe exploration has been one of the main challenges, especially in contact-rich manipulation tasks in unstructured environments. Focusing on this issue, we propose SRL-VIC: a model-free safe RL framework combined with a variable impedance controller (VIC). Specifically, safety critic and recovery policy networks are pre-trained where safety critic evaluates the safety of the next action using a risk value before it is executed and the recovery policy suggests a corrective action if the risk value is high. Furthermore, the policies are updated online where the task policy not only achieves the task but also modulates the stiffness parameters to keep a safe and compliant profile. A set of experiments in contact-rich maze tasks demonstrate that our framework outperforms the baselines (without the recovery mechanism and without the VIC), yielding a good trade-off between efficient task accomplishment and safety guarantee. We show our policy trained on simulation can be deployed on a physical robot without fine-tuning, achieving successful task completion with robustness and generalization. The video is available at https://youtu.be/ksWXR3vByoQ.