Abstract:Recording the open surgery process is essential for educational and medical evaluation purposes; however, traditional single-camera methods often face challenges such as occlusions caused by the surgeon's head and body, as well as limitations due to fixed camera angles, which reduce comprehensibility of the video content. This study addresses these limitations by employing a multi-viewpoint camera recording system, capturing the surgical procedure from six different angles to mitigate occlusions. We propose a fully supervised learning-based time series prediction method to choose the best shot sequences from multiple simultaneously recorded video streams, ensuring optimal viewpoints at each moment. Our time series prediction model forecasts future camera selections by extracting and fusing visual and semantic features from surgical videos using pre-trained models. These features are processed by a temporal prediction network with TimeBlocks to capture sequential dependencies. A linear embedding layer reduces dimensionality, and a Softmax classifier selects the optimal camera view based on the highest probability. In our experiments, we created five groups of open thyroidectomy videos, each with simultaneous recordings from six different angles. The results demonstrate that our method achieves competitive accuracy compared to traditional supervised methods, even when predicting over longer time horizons. Furthermore, our approach outperforms state-of-the-art time series prediction techniques on our dataset. This manuscript makes a unique contribution by presenting an innovative framework that advances surgical video analysis techniques, with significant implications for improving surgical education and patient safety.
Abstract:Generalization is important for peg-in-hole assembly, a fundamental industrial operation, to adapt to dynamic industrial scenarios and enhance manufacturing efficiency. While prior work has enhanced generalization ability for pose variations, spatial generalization to six degrees of freedom (6-DOF) is less researched, limiting application in real-world scenarios. This paper addresses this limitation by developing a general policy GenPiH using Proximal Policy Optimization(PPO) and dynamic simulation with domain randomization. The policy learning experiment demonstrates the policy's generalization ability with nearly 100\% success insertion across over eight thousand unique hole poses in parallel environments, and sim-to-real validation on a UR10e robot confirms the policy's performance through direct trajectory execution without task-specific tuning.
Abstract:The rapid evolution of scientific inquiry highlights an urgent need for groundbreaking methodologies that transcend the limitations of traditional research. Conventional approaches, bogged down by manual processes and siloed expertise, struggle to keep pace with the demands of modern discovery. We envision an autonomous generalist scientist (AGS) system-a fusion of agentic AI and embodied robotics-that redefines the research lifecycle. This system promises to autonomously navigate physical and digital realms, weaving together insights from disparate disciplines with unprecedented efficiency. By embedding advanced AI and robot technologies into every phase-from hypothesis formulation to peer-ready manuscripts-AGS could slash the time and resources needed for scientific research in diverse field. We foresee a future where scientific discovery follows new scaling laws, driven by the proliferation and sophistication of such systems. As these autonomous agents and robots adapt to extreme environments and leverage a growing reservoir of knowledge, they could spark a paradigm shift, pushing the boundaries of what's possible and ushering in an era of relentless innovation.
Abstract:LiDAR-based Vehicle-to-Everything (V2X) cooperative perception has demonstrated its impact on the safety and effectiveness of autonomous driving. Since current cooperative perception algorithms are trained and tested on the same dataset, the generalization ability of cooperative perception systems remains underexplored. This paper is the first work to study the Domain Generalization problem of LiDAR-based V2X cooperative perception (V2X-DG) for 3D detection based on four widely-used open source datasets: OPV2V, V2XSet, V2V4Real and DAIR-V2X. Our research seeks to sustain high performance not only within the source domain but also across other unseen domains, achieved solely through training on source domain. To this end, we propose Cooperative Mixup Augmentation based Generalization (CMAG) to improve the model generalization capability by simulating the unseen cooperation, which is designed compactly for the domain gaps in cooperative perception. Furthermore, we propose a constraint for the regularization of the robust generalized feature representation learning: Cooperation Feature Consistency (CFC), which aligns the intermediately fused features of the generalized cooperation by CMAG and the early fused features of the original cooperation in source domain. Extensive experiments demonstrate that our approach achieves significant performance gains when generalizing to other unseen datasets while it also maintains strong performance on the source dataset.
Abstract:Explainable recommendation systems leverage transparent reasoning to foster user trust and improve decision-making processes. Current approaches typically decouple recommendation generation from explanation creation, violating causal precedence principles where explanatory factors should logically precede outcomes. This paper introduces a novel framework integrating structural causal models with large language models to establish causal consistency in recommendation pipelines. Our methodology enforces explanation factors as causal antecedents to recommendation predictions through causal graph construction and counterfactual adjustment. We particularly address the confounding effect of item popularity that distorts personalization signals in explanations, developing a debiasing mechanism that disentangles genuine user preferences from conformity bias. Through comprehensive experiments across multiple recommendation scenarios, we demonstrate that CausalX achieves superior performance in recommendation accuracy, explanation plausibility, and bias mitigation compared to baselines.
Abstract:The use of children's drawings to examining their conceptual understanding has been proven to be an effective method, but there are two major problems with previous research: 1. The content of the drawings heavily relies on the task, and the ecological validity of the conclusions is low; 2. The interpretation of drawings relies too much on the subjective feelings of the researchers. To address this issue, this study uses the Large Language Model (LLM) to identify 1420 children's scientific drawings (covering 9 scientific themes/concepts), and uses the word2vec algorithm to calculate their semantic similarity. The study explores whether there are consistent drawing representations for children on the same theme, and attempts to establish a norm for children's scientific drawings, providing a baseline reference for follow-up children's drawing research. The results show that the representation of most drawings has consistency, manifested as most semantic similarity greater than 0.8. At the same time, it was found that the consistency of the representation is independent of the accuracy (of LLM's recognition), indicating the existence of consistency bias. In the subsequent exploration of influencing factors, we used Kendall rank correlation coefficient to investigate the effects of Sample Size, Abstract Degree, and Focus Points on drawings, and used word frequency statistics to explore whether children represented abstract themes/concepts by reproducing what was taught in class.
Abstract:Crafting magic and illusions is one of the most thrilling aspects of filmmaking, with visual effects (VFX) serving as the powerhouse behind unforgettable cinematic experiences. While recent advances in generative artificial intelligence have driven progress in generic image and video synthesis, the domain of controllable VFX generation remains relatively underexplored. In this work, we propose a novel paradigm for animated VFX generation as image animation, where dynamic effects are generated from user-friendly textual descriptions and static reference images. Our work makes two primary contributions: (i) Open-VFX, the first high-quality VFX video dataset spanning 15 diverse effect categories, annotated with textual descriptions, instance segmentation masks for spatial conditioning, and start-end timestamps for temporal control. (ii) VFX Creator, a simple yet effective controllable VFX generation framework based on a Video Diffusion Transformer. The model incorporates a spatial and temporal controllable LoRA adapter, requiring minimal training videos. Specifically, a plug-and-play mask control module enables instance-level spatial manipulation, while tokenized start-end motion timestamps embedded in the diffusion process, alongside the text encoder, allow precise temporal control over effect timing and pace. Extensive experiments on the Open-VFX test set demonstrate the superiority of the proposed system in generating realistic and dynamic effects, achieving state-of-the-art performance and generalization ability in both spatial and temporal controllability. Furthermore, we introduce a specialized metric to evaluate the precision of temporal control. By bridging traditional VFX techniques with generative approaches, VFX Creator unlocks new possibilities for efficient and high-quality video effect generation, making advanced VFX accessible to a broader audience.
Abstract:$Q$-learning is one of the most fundamental reinforcement learning algorithms. Previously, it is widely believed that $Q$-learning with linear function approximation (i.e., linear $Q$-learning) suffers from possible divergence. This paper instead establishes the first $L^2$ convergence rate of linear $Q$-learning to a bounded set. Notably, we do not make any modification to the original linear $Q$-learning algorithm, do not make any Bellman completeness assumption, and do not make any near-optimality assumption on the behavior policy. All we need is an $\epsilon$-softmax behavior policy with an adaptive temperature. The key to our analysis is the general result of stochastic approximations under Markovian noise with fast-changing transition functions. As a side product, we also use this general result to establish the $L^2$ convergence rate of tabular $Q$-learning with an $\epsilon$-softmax behavior policy, for which we rely on a novel pseudo-contraction property of the weighted Bellman optimality operator.
Abstract:Accurate sentiment analysis of texts is crucial for a variety of applications, such as understanding customer feedback, monitoring market trends, and detecting public sentiment. However, manually annotating large sentiment corpora for supervised learning is labor-intensive and time-consuming. Therefore, it is essential and effective to develop a semi-supervised method for the sentiment analysis task. Although some methods have been proposed for semi-supervised text classification, they rely on the intrinsic information within the unlabeled data and the learning capability of the NLP model, which lack generalization ability to the sentiment analysis scenario and may prone to overfit. Inspired by the ability of pretrained Large Language Models (LLMs) in following instructions and generating coherent text, we propose a Semantic Consistency Regularization with Large Language Models (SCR) framework for semi-supervised sentiment analysis. We introduce two prompting strategies to semantically enhance unlabeled text using LLMs. The first is Entity-based Enhancement (SCR-EE), which involves extracting entities and numerical information, and querying the LLM to reconstruct the textual information. The second is Concept-based Enhancement (SCR-CE), which directly queries the LLM with the original sentence for semantic reconstruction. Subsequently, the LLM-augmented data is utilized for a consistency loss with confidence thresholding, which preserves high-quality agreement samples to provide additional supervision signals during training. Furthermore, to fully utilize the uncertain unlabeled data samples, we propose a class re-assembling strategy inspired by the class space shrinking theorem. Experiments show our method achieves remarkable performance over prior semi-supervised methods.
Abstract:Personalized news headline generation aims to provide users with attention-grabbing headlines that are tailored to their preferences. Prevailing methods focus on user-oriented content preferences, but most of them overlook the fact that diverse stylistic preferences are integral to users' panoramic interests, leading to suboptimal personalization. In view of this, we propose a novel Stylistic-Content Aware Personalized Headline Generation (SCAPE) framework. SCAPE extracts both content and stylistic features from headlines with the aid of large language model (LLM) collaboration. It further adaptively integrates users' long- and short-term interests through a contrastive learning-based hierarchical fusion network. By incorporating the panoramic interests into the headline generator, SCAPE reflects users' stylistic-content preferences during the generation process. Extensive experiments on the real-world dataset PENS demonstrate the superiority of SCAPE over baselines.