Abstract:Video temporal grounding aims to localize relevant temporal boundaries in a video given a textual prompt. Recent work has focused on enabling Video LLMs to perform video temporal grounding via next-token prediction of temporal timestamps. However, accurately localizing timestamps in videos remains challenging for Video LLMs when relying solely on temporal token prediction. Our proposed TimeRefine addresses this challenge in two ways. First, instead of directly predicting the start and end timestamps, we reformulate the temporal grounding task as a temporal refining task: the model first makes rough predictions and then refines them by predicting offsets to the target segment. This refining process is repeated multiple times, through which the model progressively self-improves its temporal localization accuracy. Second, to enhance the model's temporal perception capabilities, we incorporate an auxiliary prediction head that penalizes the model more if a predicted segment deviates further from the ground truth, thus encouraging the model to make closer and more accurate predictions. Our plug-and-play method can be integrated into most LLM-based temporal grounding approaches. The experimental results demonstrate that TimeRefine achieves 3.6% and 5.0% mIoU improvements on the ActivityNet and Charades-STA datasets, respectively. Code and pretrained models will be released.
Abstract:Large language models (LLMs) excel at retrieving information from lengthy text, but their vision-language counterparts (VLMs) face difficulties with hour-long videos, especially for temporal grounding. Specifically, these VLMs are constrained by frame limitations, often losing essential temporal details needed for accurate event localization in extended video content. We propose ReVisionLLM, a recursive vision-language model designed to locate events in hour-long videos. Inspired by human search strategies, our model initially targets broad segments of interest, progressively revising its focus to pinpoint exact temporal boundaries. Our model can seamlessly handle videos of vastly different lengths, from minutes to hours. We also introduce a hierarchical training strategy that starts with short clips to capture distinct events and progressively extends to longer videos. To our knowledge, ReVisionLLM is the first VLM capable of temporal grounding in hour-long videos, outperforming previous state-of-the-art methods across multiple datasets by a significant margin (+2.6% R1@0.1 on MAD). The code is available at https://github.com/Tanveer81/ReVisionLLM.
Abstract:Robot Imitation Learning (IL) is a crucial technique in robot learning, where agents learn by mimicking human demonstrations. However, IL encounters scalability challenges stemming from both non-user-friendly demonstration collection methods and the extensive time required to amass a sufficient number of demonstrations for effective training. In response, we introduce the Augmented Reality for Collection and generAtion of DEmonstrations (ARCADE) framework, designed to scale up demonstration collection for robot manipulation tasks. Our framework combines two key capabilities: 1) it leverages AR to make demonstration collection as simple as users performing daily tasks using their hands, and 2) it enables the automatic generation of additional synthetic demonstrations from a single human-derived demonstration, significantly reducing user effort and time. We assess ARCADE's performance on a real Fetch robot across three robotics tasks: 3-Waypoints-Reach, Push, and Pick-And-Place. Using our framework, we were able to rapidly train a policy using vanilla Behavioral Cloning (BC), a classic IL algorithm, which excelled across these three tasks. We also deploy ARCADE on a real household task, Pouring-Water, achieving an 80% success rate.
Abstract:Goal-oriented planning, or anticipating a series of actions that transition an agent from its current state to a predefined objective, is crucial for developing intelligent assistants aiding users in daily procedural tasks. The problem presents significant challenges due to the need for comprehensive knowledge of temporal and hierarchical task structures, as well as strong capabilities in reasoning and planning. To achieve this, prior work typically relies on extensive training on the target dataset, which often results in significant dataset bias and a lack of generalization to unseen tasks. In this work, we introduce VidAssist, an integrated framework designed for zero/few-shot goal-oriented planning in instructional videos. VidAssist leverages large language models (LLMs) as both the knowledge base and the assessment tool for generating and evaluating action plans, thus overcoming the challenges of acquiring procedural knowledge from small-scale, low-diversity datasets. Moreover, VidAssist employs a breadth-first search algorithm for optimal plan generation, in which a composite of value functions designed for goal-oriented planning is utilized to assess the predicted actions at each step. Extensive experiments demonstrate that VidAssist offers a unified framework for different goal-oriented planning setups, e.g., visual planning for assistance (VPA) and procedural planning (PP), and achieves remarkable performance in zero-shot and few-shot setups. Specifically, our few-shot model outperforms the prior fully supervised state-of-the-art method by +7.7% in VPA and +4.81% PP task on the COIN dataset while predicting 4 future actions. Code, and models are publicly available at https://sites.google.com/view/vidassist.
Abstract:We present a framework for learning to generate background music from video inputs. Unlike existing works that rely on symbolic musical annotations, which are limited in quantity and diversity, our method leverages large-scale web videos accompanied by background music. This enables our model to learn to generate realistic and diverse music. To accomplish this goal, we develop a generative video-music Transformer with a novel semantic video-music alignment scheme. Our model uses a joint autoregressive and contrastive learning objective, which encourages the generation of music aligned with high-level video content. We also introduce a novel video-beat alignment scheme to match the generated music beats with the low-level motions in the video. Lastly, to capture fine-grained visual cues in a video needed for realistic background music generation, we introduce a new temporal video encoder architecture, allowing us to efficiently process videos consisting of many densely sampled frames. We train our framework on our newly curated DISCO-MV dataset, consisting of 2.2M video-music samples, which is orders of magnitude larger than any prior datasets used for video music generation. Our method outperforms existing approaches on the DISCO-MV and MusicCaps datasets according to various music generation evaluation metrics, including human evaluation. Results are available at https://genjib.github.io/project_page/VMAs/index.html
Abstract:Video-language understanding tasks have focused on short video clips, often struggling with long-form video understanding tasks. Recently, many long video-language understanding approaches have leveraged the reasoning capabilities of Large Language Models (LLMs) to perform long video QA, transforming videos into densely sampled frame captions, and asking LLMs to respond to text queries over captions. However, the frames used for captioning are often redundant and contain irrelevant information, making dense sampling inefficient, and ignoring the fact that video QA requires varying levels of granularity, with some video segments being highly relevant to the question (needing more fine-grained detail) while others being less relevant. Thus, these LLM-based approaches are prone to missing information and operate on large numbers of irrelevant captions, lowering both performance and efficiency. To address these issues, we introduce VideoTree, a query-adaptive and hierarchical framework for long-video understanding with LLMs. VideoTree dynamically extracts query-related information from a video and builds a tree-based representation for LLM reasoning. First, VideoTree adaptively selects frames for captioning by iteratively clustering frames based on their visual features and scoring clusters using their relevance to the query. Second, it organizes visual clusters into a query-adaptive and hierarchical tree structure; the tree encodes varying levels of granularity, with higher resolution on relevant segments. Finally, VideoTree produces an answer by traversing the tree's keyframes and passing their captions to an LLM answerer. Our method improves both reasoning accuracy and efficiency compared to existing methods: VideoTree achieves a 7.0%, 2.2%, and 2.7% accuracy gain over baselines on the EgoSchema, NExT-QA, and IntentQA benchmarks, respectively, while reducing inference time by 40%.
Abstract:Traditional audio-visual methods rely on independent audio and visual backbones, which is costly and not scalable. In this work, we investigate using an audio-visual siamese network (AVSiam) for efficient and scalable audio-visual pretraining. Our framework uses a single shared vision transformer backbone to process audio and visual inputs, improving its parameter efficiency, reducing the GPU memory footprint, and allowing us to scale our method to larger datasets and model sizes. We pretrain our model using a contrastive audio-visual matching objective with a multi-ratio random masking scheme, which enables our model to process larger audio-visual instance batches, helpful for contrastive learning. Unlike prior audio-visual methods, our method can robustly handle audio, visual, and audio-visual inputs with a single shared ViT backbone. Furthermore, despite using the shared backbone for both modalities, AVSiam achieves competitive or even better results than prior methods on AudioSet and VGGSound for audio-visual classification and retrieval. Our code is available at https://github.com/GenjiB/AVSiam
Abstract:Robot Imitation Learning (IL) is a widely used method for training robots to perform manipulation tasks that involve mimicking human demonstrations to acquire skills. However, its practicality has been limited due to its requirement that users be trained in operating real robot arms to provide demonstrations. This paper presents an innovative solution: an Augmented Reality (AR)-assisted framework for demonstration collection, empowering non-roboticist users to produce demonstrations for robot IL using devices like the HoloLens 2. Our framework facilitates scalable and diverse demonstration collection for real-world tasks. We validate our approach with experiments on three classical robotics tasks: reach, push, and pick-and-place. The real robot performs each task successfully while replaying demonstrations collected via AR.
Abstract:We present a parameter-efficient method for continual video question-answering (VidQA) learning. Our method, named DAM, uses the proposed Dynamic Adapter Merging to (i) mitigate catastrophic forgetting, (ii) enable efficient adaptation to continually arriving datasets, (iii) handle inputs from unknown datasets during inference, and (iv) enable knowledge sharing across similar dataset domains. Given a set of continually streaming VidQA datasets, we sequentially train dataset-specific adapters for each dataset while freezing the parameters of a large pretrained video-language backbone. During inference, given a video-question sample from an unknown domain, our method first uses the proposed non-parametric router function to compute a probability for each adapter, reflecting how relevant that adapter is to the current video-question input instance. Subsequently, the proposed dynamic adapter merging scheme aggregates all the adapter weights into a new adapter instance tailored for that particular test sample to compute the final VidQA prediction, mitigating the impact of inaccurate router predictions and facilitating knowledge sharing across domains. Our DAM model outperforms prior state-of-the-art continual learning approaches by 9.1% while exhibiting 1.9% less forgetting on 6 VidQA datasets spanning various domains. We further extend DAM to continual image classification and image QA and outperform prior methods by a large margin. The code is publicly available at: https://github.com/klauscc/DAM
Abstract:Most video captioning models are designed to process short video clips of few seconds and output text describing low-level visual concepts (e.g., objects, scenes, atomic actions). However, most real-world videos last for minutes or hours and have a complex hierarchical structure spanning different temporal granularities. We propose Video ReCap, a recursive video captioning model that can process video inputs of dramatically different lengths (from 1 second to 2 hours) and output video captions at multiple hierarchy levels. The recursive video-language architecture exploits the synergy between different video hierarchies and can process hour-long videos efficiently. We utilize a curriculum learning training scheme to learn the hierarchical structure of videos, starting from clip-level captions describing atomic actions, then focusing on segment-level descriptions, and concluding with generating summaries for hour-long videos. Furthermore, we introduce Ego4D-HCap dataset by augmenting Ego4D with 8,267 manually collected long-range video summaries. Our recursive model can flexibly generate captions at different hierarchy levels while also being useful for other complex video understanding tasks, such as VideoQA on EgoSchema. Data, code, and models are available at: https://sites.google.com/view/vidrecap