Abstract:Large language models (LLMs) excel at retrieving information from lengthy text, but their vision-language counterparts (VLMs) face difficulties with hour-long videos, especially for temporal grounding. Specifically, these VLMs are constrained by frame limitations, often losing essential temporal details needed for accurate event localization in extended video content. We propose ReVisionLLM, a recursive vision-language model designed to locate events in hour-long videos. Inspired by human search strategies, our model initially targets broad segments of interest, progressively revising its focus to pinpoint exact temporal boundaries. Our model can seamlessly handle videos of vastly different lengths, from minutes to hours. We also introduce a hierarchical training strategy that starts with short clips to capture distinct events and progressively extends to longer videos. To our knowledge, ReVisionLLM is the first VLM capable of temporal grounding in hour-long videos, outperforming previous state-of-the-art methods across multiple datasets by a significant margin (+2.6% R1@0.1 on MAD). The code is available at https://github.com/Tanveer81/ReVisionLLM.
Abstract:Finding meaningful groups, i.e., clusters, in high-dimensional data such as images or texts without labeled data at hand is an important challenge in data mining. In recent years, deep clustering methods have achieved remarkable results in these tasks. However, most of these methods require the user to specify the number of clusters in advance. This is a major limitation since the number of clusters is typically unknown if labeled data is unavailable. Thus, an area of research has emerged that addresses this problem. Most of these approaches estimate the number of clusters separated from the clustering process. This results in a strong dependency of the clustering result on the quality of the initial embedding. Other approaches are tailored to specific clustering processes, making them hard to adapt to other scenarios. In this paper, we propose UNSEEN, a general framework that, starting from a given upper bound, is able to estimate the number of clusters. To the best of our knowledge, it is the first method that can be easily combined with various deep clustering algorithms. We demonstrate the applicability of our approach by combining UNSEEN with the popular deep clustering algorithms DCN, DEC, and DKM and verify its effectiveness through an extensive experimental evaluation on several image and tabular datasets. Moreover, we perform numerous ablations to analyze our approach and show the importance of its components. The code is available at: https://github.com/collinleiber/UNSEEN
Abstract:Allocation tasks represent a class of problems where a limited amount of resources must be allocated to a set of entities at each time step. Prominent examples of this task include portfolio optimization or distributing computational workloads across servers. Allocation tasks are typically bound by linear constraints describing practical requirements that have to be strictly fulfilled at all times. In portfolio optimization, for example, investors may be obligated to allocate less than 30\% of the funds into a certain industrial sector in any investment period. Such constraints restrict the action space of allowed allocations in intricate ways, which makes learning a policy that avoids constraint violations difficult. In this paper, we propose a new method for constrained allocation tasks based on an autoregressive process to sequentially sample allocations for each entity. In addition, we introduce a novel de-biasing mechanism to counter the initial bias caused by sequential sampling. We demonstrate the superior performance of our approach compared to a variety of Constrained Reinforcement Learning (CRL) methods on three distinct constrained allocation tasks: portfolio optimization, computational workload distribution, and a synthetic allocation benchmark. Our code is available at: https://github.com/niklasdbs/paspo
Abstract:In settings where only a budgeted amount of labeled data can be afforded, active learning seeks to devise query strategies for selecting the most informative data points to be labeled, aiming to enhance learning algorithms' efficiency and performance. Numerous such query strategies have been proposed and compared in the active learning literature. However, the community still lacks standardized benchmarks for comparing the performance of different query strategies. This particularly holds for the combination of query strategies with different learning algorithms into active learning pipelines and examining the impact of the learning algorithm choice. To close this gap, we propose ALPBench, which facilitates the specification, execution, and performance monitoring of active learning pipelines. It has built-in measures to ensure evaluations are done reproducibly, saving exact dataset splits and hyperparameter settings of used algorithms. In total, ALPBench consists of 86 real-world tabular classification datasets and 5 active learning settings, yielding 430 active learning problems. To demonstrate its usefulness and broad compatibility with various learning algorithms and query strategies, we conduct an exemplary study evaluating 9 query strategies paired with 8 learning algorithms in 2 different settings. We provide ALPBench here: https://github.com/ValentinMargraf/ActiveLearningPipelines.
Abstract:Portfolio optimization tasks describe sequential decision problems in which the investor's wealth is distributed across a set of assets. Allocation constraints are used to enforce minimal or maximal investments into particular subsets of assets to control for objectives such as limiting the portfolio's exposure to a certain sector due to environmental concerns. Although methods for constrained Reinforcement Learning (CRL) can optimize policies while considering allocation constraints, it can be observed that these general methods yield suboptimal results. In this paper, we propose a novel approach to handle allocation constraints based on a decomposition of the constraint action space into a set of unconstrained allocation problems. In particular, we examine this approach for the case of two constraints. For example, an investor may wish to invest at least a certain percentage of the portfolio into green technologies while limiting the investment in the fossil energy sector. We show that the action space of the task is equivalent to the decomposed action space, and introduce a new reinforcement learning (RL) approach CAOSD, which is built on top of the decomposition. The experimental evaluation on real-world Nasdaq-100 data demonstrates that our approach consistently outperforms state-of-the-art CRL benchmarks for portfolio optimization.
Abstract:We present a novel end-to-end method for long-form video temporal grounding to locate specific moments described by natural language queries. Prior long-video methods for this task typically contain two stages: proposal selection and grounding regression. However, the proposal selection of these methods is disjoint from the grounding network and is not trained end-to-end, which limits the effectiveness of these methods. Moreover, these methods operate uniformly over the entire temporal window, which is suboptimal given redundant and irrelevant features in long videos. In contrast to these prior approaches, we introduce RGNet, a unified network designed for jointly selecting proposals from hour-long videos and locating moments specified by natural language queries within them. To achieve this, we redefine proposal selection as a video-text retrieval task, i.e., retrieving the correct candidate videos given a text query. The core component of RGNet is a unified cross-modal RG-Encoder that bridges the two stages with shared features and mutual optimization. The encoder strategically focuses on relevant time frames using a sparse sampling technique. RGNet outperforms previous methods, demonstrating state-of-the-art performance on long video temporal grounding datasets MAD and Ego4D. The code is released at https://github.com/Tanveer81/RGNet
Abstract:Do we need active learning? The rise of strong deep semi-supervised methods raises doubt about the usability of active learning in limited labeled data settings. This is caused by results showing that combining semi-supervised learning (SSL) methods with a random selection for labeling can outperform existing active learning (AL) techniques. However, these results are obtained from experiments on well-established benchmark datasets that can overestimate the external validity. However, the literature lacks sufficient research on the performance of active semi-supervised learning methods in realistic data scenarios, leaving a notable gap in our understanding. Therefore we present three data challenges common in real-world applications: between-class imbalance, within-class imbalance, and between-class similarity. These challenges can hurt SSL performance due to confirmation bias. We conduct experiments with SSL and AL on simulated data challenges and find that random sampling does not mitigate confirmation bias and, in some cases, leads to worse performance than supervised learning. In contrast, we demonstrate that AL can overcome confirmation bias in SSL in these realistic settings. Our results provide insights into the potential of combining active and semi-supervised learning in the presence of common real-world challenges, which is a promising direction for robust methods when learning with limited labeled data in real-world applications.
Abstract:Node classification is one of the core tasks on attributed graphs, but successful graph learning solutions require sufficiently labeled data. To keep annotation costs low, active graph learning focuses on selecting the most qualitative subset of nodes that maximizes label efficiency. However, deciding which heuristic is best suited for an unlabeled graph to increase label efficiency is a persistent challenge. Existing solutions either neglect aligning the learned model and the sampling method or focus only on limited selection aspects. They are thus sometimes worse or only equally good as random sampling. In this work, we introduce a novel active graph learning approach called DiffusAL, showing significant robustness in diverse settings. Toward better transferability between different graph structures, we combine three independent scoring functions to identify the most informative node samples for labeling in a parameter-free way: i) Model Uncertainty, ii) Diversity Component, and iii) Node Importance computed via graph diffusion heuristics. Most of our calculations for acquisition and training can be pre-processed, making DiffusAL more efficient compared to approaches combining diverse selection criteria and similarly fast as simpler heuristics. Our experiments on various benchmark datasets show that, unlike previous methods, our approach significantly outperforms random selection in 100% of all datasets and labeling budgets tested.
Abstract:Recent trends in Video Instance Segmentation (VIS) have seen a growing reliance on online methods to model complex and lengthy video sequences. However, the degradation of representation and noise accumulation of the online methods, especially during occlusion and abrupt changes, pose substantial challenges. Transformer-based query propagation provides promising directions at the cost of quadratic memory attention. However, they are susceptible to the degradation of instance features due to the above-mentioned challenges and suffer from cascading effects. The detection and rectification of such errors remain largely underexplored. To this end, we introduce \textbf{GRAtt-VIS}, \textbf{G}ated \textbf{R}esidual \textbf{Att}ention for \textbf{V}ideo \textbf{I}nstance \textbf{S}egmentation. Firstly, we leverage a Gumbel-Softmax-based gate to detect possible errors in the current frame. Next, based on the gate activation, we rectify degraded features from its past representation. Such a residual configuration alleviates the need for dedicated memory and provides a continuous stream of relevant instance features. Secondly, we propose a novel inter-instance interaction using gate activation as a mask for self-attention. This masking strategy dynamically restricts the unrepresentative instance queries in the self-attention and preserves vital information for long-term tracking. We refer to this novel combination of Gated Residual Connection and Masked Self-Attention as \textbf{GRAtt} block, which can easily be integrated into the existing propagation-based framework. Further, GRAtt blocks significantly reduce the attention overhead and simplify dynamic temporal modeling. GRAtt-VIS achieves state-of-the-art performance on YouTube-VIS and the highly challenging OVIS dataset, significantly improving over previous methods. Code is available at \url{https://github.com/Tanveer81/GRAttVIS}.
Abstract:Recent transformer-based offline video instance segmentation (VIS) approaches achieve encouraging results and significantly outperform online approaches. However, their reliance on the whole video and the immense computational complexity caused by full Spatio-temporal attention limit them in real-life applications such as processing lengthy videos. In this paper, we propose a single-stage transformer-based efficient online VIS framework named InstanceFormer, which is especially suitable for long and challenging videos. We propose three novel components to model short-term and long-term dependency and temporal coherence. First, we propagate the representation, location, and semantic information of prior instances to model short-term changes. Second, we propose a novel memory cross-attention in the decoder, which allows the network to look into earlier instances within a certain temporal window. Finally, we employ a temporal contrastive loss to impose coherence in the representation of an instance across all frames. Memory attention and temporal coherence are particularly beneficial to long-range dependency modeling, including challenging scenarios like occlusion. The proposed InstanceFormer outperforms previous online benchmark methods by a large margin across multiple datasets. Most importantly, InstanceFormer surpasses offline approaches for challenging and long datasets such as YouTube-VIS-2021 and OVIS. Code is available at https://github.com/rajatkoner08/InstanceFormer.