Abstract:Quantification learning is the task of predicting the label distribution of a set of instances. We study this problem in the context of graph-structured data, where the instances are vertices. Previously, this problem has only been addressed via node clustering methods. In this paper, we extend the popular Adjusted Classify & Count (ACC) method to graphs. We show that the prior probability shift assumption upon which ACC relies is often not fulfilled and propose two novel graph quantification techniques: Structural importance sampling (SIS) makes ACC applicable in graph domains with covariate shift. Neighborhood-aware ACC improves quantification in the presence of non-homophilic edges. We show the effectiveness of our techniques on multiple graph quantification tasks.
Abstract:This position paper argues that, to its detriment, transparency research overlooks many foundational concepts of artificial intelligence. Here, we focus on uncertainty quantification -- in the context of ante-hoc interpretability and counterfactual explainability -- showing how its adoption could address key challenges in the field. First, we posit that uncertainty and ante-hoc interpretability offer complementary views of the same underlying idea; second, we assert that uncertainty provides a principled unifying framework for counterfactual explainability. Consequently, inherently transparent models can benefit from human-centred explanatory insights -- like counterfactuals -- which are otherwise missing. At a higher level, integrating artificial intelligence fundamentals into transparency research promises to yield more reliable, robust and understandable predictive models.
Abstract:The accurate representation of epistemic uncertainty is a challenging yet essential task in machine learning. A widely used representation corresponds to convex sets of probabilistic predictors, also known as credal sets. One popular way of constructing these credal sets is via ensembling or specialized supervised learning methods, where the epistemic uncertainty can be quantified through measures such as the set size or the disagreement among members. In principle, these sets should contain the true data-generating distribution. As a necessary condition for this validity, we adopt the strongest notion of calibration as a proxy. Concretely, we propose a novel statistical test to determine whether there is a convex combination of the set's predictions that is calibrated in distribution. In contrast to previous methods, our framework allows the convex combination to be instance dependent, recognizing that different ensemble members may be better calibrated in different regions of the input space. Moreover, we learn this combination via proper scoring rules, which inherently optimize for calibration. Building on differentiable, kernel-based estimators of calibration errors, we introduce a nonparametric testing procedure and demonstrate the benefits of capturing instance-level variability on of synthetic and real-world experiments.
Abstract:Recently, Cella and Martin proved how, under an assumption called consonance, a credal set (i.e. a closed and convex set of probabilities) can be derived from the conformal transducer associated with transductive conformal prediction. We show that the Imprecise Highest Density Region (IHDR) associated with such a credal set corresponds to the classical Conformal Prediction Region. In proving this result, we relate the set of probability density/mass functions (pdf/pmf's) associated with the elements of the credal set to the imprecise probabilistic concept of a cloud. As a result, we establish new relationships between Conformal Prediction and Imprecise Probability (IP) theories. A byproduct of our presentation is the discovery that consonant plausibility functions are monoid homomorphisms, a new algebraic property of an IP tool.
Abstract:Recent advances on instruction fine-tuning have led to the development of various prompting techniques for large language models, such as explicit reasoning steps. However, the success of techniques depends on various parameters, such as the task, language model, and context provided. Finding an effective prompt is, therefore, often a trial-and-error process. Most existing approaches to automatic prompting aim to optimize individual techniques instead of compositions of techniques and their dependence on the input. To fill this gap, we propose an adaptive prompting approach that predicts the optimal prompt composition ad-hoc for a given input. We apply our approach to social bias detection, a highly context-dependent task that requires semantic understanding. We evaluate it with three large language models on three datasets, comparing compositions to individual techniques and other baselines. The results underline the importance of finding an effective prompt composition. Our approach robustly ensures high detection performance, and is best in several settings. Moreover, first experiments on other tasks support its generalizability.
Abstract:The Shapley value is the prevalent solution for fair division problems in which a payout is to be divided among multiple agents. By adopting a game-theoretic view, the idea of fair division and the Shapley value can also be used in machine learning to quantify the individual contribution of features or data points to the performance of a predictive model. Despite its popularity and axiomatic justification, the Shapley value suffers from a computational complexity that scales exponentially with the number of entities involved, and hence requires approximation methods for its reliable estimation. We propose SVA$k_{\text{ADD}}$, a novel approximation method that fits a $k$-additive surrogate game. By taking advantage of $k$-additivity, we are able to elicit the exact Shapley values of the surrogate game and then use these values as estimates for the original fair division problem. The efficacy of our method is evaluated empirically and compared to competing methods.
Abstract:Conformal prediction has emerged as a widely used framework for constructing valid prediction sets in classification and regression tasks. In this work, we extend the split conformal prediction framework to hierarchical classification, where prediction sets are commonly restricted to internal nodes of a predefined hierarchy, and propose two computationally efficient inference algorithms. The first algorithm returns internal nodes as prediction sets, while the second relaxes this restriction, using the notion of representation complexity, yielding a more general and combinatorial inference problem, but smaller set sizes. Empirical evaluations on several benchmark datasets demonstrate the effectiveness of the proposed algorithms in achieving nominal coverage.
Abstract:Albeit the ubiquitous use of Graph Neural Networks (GNNs) in machine learning (ML) prediction tasks involving graph-structured data, their interpretability remains challenging. In explainable artificial intelligence (XAI), the Shapley Value (SV) is the predominant method to quantify contributions of individual features to a ML model's output. Addressing the limitations of SVs in complex prediction models, Shapley Interactions (SIs) extend the SV to groups of features. In this work, we explain single graph predictions of GNNs with SIs that quantify node contributions and interactions among multiple nodes. By exploiting the GNN architecture, we show that the structure of interactions in node embeddings are preserved for graph prediction. As a result, the exponential complexity of SIs depends only on the receptive fields, i.e. the message-passing ranges determined by the connectivity of the graph and the number of convolutional layers. Based on our theoretical results, we introduce GraphSHAP-IQ, an efficient approach to compute any-order SIs exactly. GraphSHAP-IQ is applicable to popular message passing techniques in conjunction with a linear global pooling and output layer. We showcase that GraphSHAP-IQ substantially reduces the exponential complexity of computing exact SIs on multiple benchmark datasets. Beyond exact computation, we evaluate GraphSHAP-IQ's approximation of SIs on popular GNN architectures and compare with existing baselines. Lastly, we visualize SIs of real-world water distribution networks and molecule structures using a SI-Graph.
Abstract:The Random Forest (RF) classifier is often claimed to be relatively well calibrated when compared with other machine learning methods. Moreover, the existing literature suggests that traditional calibration methods, such as isotonic regression, do not substantially enhance the calibration of RF probability estimates unless supplied with extensive calibration data sets, which can represent a significant obstacle in cases of limited data availability. Nevertheless, there seems to be no comprehensive study validating such claims and systematically comparing state-of-the-art calibration methods specifically for RF. To close this gap, we investigate a broad spectrum of calibration methods tailored to or at least applicable to RF, ranging from scaling techniques to more advanced algorithms. Our results based on synthetic as well as real-world data unravel the intricacies of RF probability estimates, scrutinize the impacts of hyper-parameters, compare calibration methods in a systematic way. We show that a well-optimized RF performs as well as or better than leading calibration approaches.
Abstract:Feature-based explanations, using perturbations or gradients, are a prevalent tool to understand decisions of black box machine learning models. Yet, differences between these methods still remain mostly unknown, which limits their applicability for practitioners. In this work, we introduce a unified framework for local and global feature-based explanations using two well-established concepts: functional ANOVA (fANOVA) from statistics, and the notion of value and interaction from cooperative game theory. We introduce three fANOVA decompositions that determine the influence of feature distributions, and use game-theoretic measures, such as the Shapley value and interactions, to specify the influence of higher-order interactions. Our framework combines these two dimensions to uncover similarities and differences between a wide range of explanation techniques for features and groups of features. We then empirically showcase the usefulness of our framework on synthetic and real-world datasets.