Abstract:Originally rooted in game theory, the Shapley Value (SV) has recently become an important tool in machine learning research. Perhaps most notably, it is used for feature attribution and data valuation in explainable artificial intelligence. Shapley Interactions (SIs) naturally extend the SV and address its limitations by assigning joint contributions to groups of entities, which enhance understanding of black box machine learning models. Due to the exponential complexity of computing SVs and SIs, various methods have been proposed that exploit structural assumptions or yield probabilistic estimates given limited resources. In this work, we introduce shapiq, an open-source Python package that unifies state-of-the-art algorithms to efficiently compute SVs and any-order SIs in an application-agnostic framework. Moreover, it includes a benchmarking suite containing 11 machine learning applications of SIs with pre-computed games and ground-truth values to systematically assess computational performance across domains. For practitioners, shapiq is able to explain and visualize any-order feature interactions in predictions of models, including vision transformers, language models, as well as XGBoost and LightGBM with TreeSHAP-IQ. With shapiq, we extend shap beyond feature attributions and consolidate the application of SVs and SIs in machine learning that facilitates future research. The source code and documentation are available at https://github.com/mmschlk/shapiq.
Abstract:In recent studies, line search methods have been demonstrated to significantly enhance the performance of conventional stochastic gradient descent techniques across various datasets and architectures, while making an otherwise critical choice of learning rate schedule superfluous. In this paper, we identify problems of current state-of-the-art of line search methods, propose enhancements, and rigorously assess their effectiveness. Furthermore, we evaluate these methods on orders of magnitude larger datasets and more complex data domains than previously done. More specifically, we enhance the Armijo line search method by speeding up its computation and incorporating a momentum term into the Armijo criterion, making it better suited for stochastic mini-batching. Our optimization approach outperforms both the previous Armijo implementation and a tuned learning rate schedule for the Adam and SGD optimizers. Our evaluation covers a diverse range of architectures, such as Transformers, CNNs, and MLPs, as well as data domains, including NLP and image data. Our work is publicly available as a Python package, which provides a simple Pytorch optimizer.
Abstract:The Shapley value (SV) is a prevalent approach of allocating credit to machine learning (ML) entities to understand black box ML models. Enriching such interpretations with higher-order interactions is inevitable for complex systems, where the Shapley Interaction Index (SII) is a direct axiomatic extension of the SV. While it is well-known that the SV yields an optimal approximation of any game via a weighted least square (WLS) objective, an extension of this result to SII has been a long-standing open problem, which even led to the proposal of an alternative index. In this work, we characterize higher-order SII as a solution to a WLS problem, which constructs an optimal approximation via SII and $k$-Shapley values ($k$-SII). We prove this representation for the SV and pairwise SII and give empirically validated conjectures for higher orders. As a result, we propose KernelSHAP-IQ, a direct extension of KernelSHAP for SII, and demonstrate state-of-the-art performance for feature interactions.
Abstract:While shallow decision trees may be interpretable, larger ensemble models like gradient-boosted trees, which often set the state of the art in machine learning problems involving tabular data, still remain black box models. As a remedy, the Shapley value (SV) is a well-known concept in explainable artificial intelligence (XAI) research for quantifying additive feature attributions of predictions. The model-specific TreeSHAP methodology solves the exponential complexity for retrieving exact SVs from tree-based models. Expanding beyond individual feature attribution, Shapley interactions reveal the impact of intricate feature interactions of any order. In this work, we present TreeSHAP-IQ, an efficient method to compute any-order additive Shapley interactions for predictions of tree-based models. TreeSHAP-IQ is supported by a mathematical framework that exploits polynomial arithmetic to compute the interaction scores in a single recursive traversal of the tree, akin to Linear TreeSHAP. We apply TreeSHAP-IQ on state-of-the-art tree ensembles and explore interactions on well-established benchmark datasets.
Abstract:Post-hoc explanation techniques such as the well-established partial dependence plot (PDP), which investigates feature dependencies, are used in explainable artificial intelligence (XAI) to understand black-box machine learning models. While many real-world applications require dynamic models that constantly adapt over time and react to changes in the underlying distribution, XAI, so far, has primarily considered static learning environments, where models are trained in a batch mode and remain unchanged. We thus propose a novel model-agnostic XAI framework called incremental PDP (iPDP) that extends on the PDP to extract time-dependent feature effects in non-stationary learning environments. We formally analyze iPDP and show that it approximates a time-dependent variant of the PDP that properly reacts to real and virtual concept drift. The time-sensitivity of iPDP is controlled by a single smoothing parameter, which directly corresponds to the variance and the approximation error of iPDP in a static learning environment. We illustrate the efficacy of iPDP by showcasing an example application for drift detection and conducting multiple experiments on real-world and synthetic data sets and streams.
Abstract:Explainable Artificial Intelligence (XAI) focuses mainly on batch learning scenarios. In the static learning tasks, various XAI methods, like SAGE, have been proposed that distribute the importance of a model on its input features. However, models are often applied in ever-changing dynamic environments like incremental learning. As a result, we propose iSAGE as a direct incrementalization of SAGE suited for dynamic learning environments. We further provide an efficient approximation method to model feature removal based on the conditional data distribution in an incremental setting. We formally analyze our explanation method to show that it is an unbiased estimator and construct confidence bounds for the point estimates. Lastly, we evaluate our approach in a thorough experimental analysis based on well-established data sets and concept drift streams.
Abstract:Predominately in explainable artificial intelligence (XAI) research, the Shapley value (SV) is applied to determine feature importance scores for any black box model. Shapley interaction indices extend the Shapley value to define any-order feature interaction scores. Defining a unique Shapley interaction index is an open research question and, so far, three definitions have been proposed, which differ by their choice of axioms. Moreover, each definition requires a specific approximation technique. We, however, propose SHAPley Interaction Quantification (SHAP-IQ), an efficient sampling-based approximator to compute Shapley interactions for all three definitions, as well as all other that satisfy the linearity, symmetry and dummy axiom. SHAP-IQ is based on a novel representation and, in contrast to existing methods, we provide theoretical guarantees for its approximation quality, as well as estimates for the variance of the point estimates. For the special case of SV, our approach reveals a novel representation of the SV and corresponds to Unbiased KernelSHAP with a greatly simplified calculation. We illustrate the computational efficiency and effectiveness by explaining state-of-the-art language models among high-dimensional synthetic models.
Abstract:Explainable Artificial Intelligence (XAI) has mainly focused on static learning scenarios so far. We are interested in dynamic scenarios where data is sampled progressively, and learning is done in an incremental rather than a batch mode. We seek efficient incremental algorithms for computing feature importance (FI) measures, specifically, an incremental FI measure based on feature marginalization of absent features similar to permutation feature importance (PFI). We propose an efficient, model-agnostic algorithm called iPFI to estimate this measure incrementally and under dynamic modeling conditions including concept drift. We prove theoretical guarantees on the approximation quality in terms of expectation and variance. To validate our theoretical findings and the efficacy of our approaches compared to traditional batch PFI, we conduct multiple experimental studies on benchmark data with and without concept drift.