LTCI
Abstract:Recent advances on instruction fine-tuning have led to the development of various prompting techniques for large language models, such as explicit reasoning steps. However, the success of techniques depends on various parameters, such as the task, language model, and context provided. Finding an effective prompt is, therefore, often a trial-and-error process. Most existing approaches to automatic prompting aim to optimize individual techniques instead of compositions of techniques and their dependence on the input. To fill this gap, we propose an adaptive prompting approach that predicts the optimal prompt composition ad-hoc for a given input. We apply our approach to social bias detection, a highly context-dependent task that requires semantic understanding. We evaluate it with three large language models on three datasets, comparing compositions to individual techniques and other baselines. The results underline the importance of finding an effective prompt composition. Our approach robustly ensures high detection performance, and is best in several settings. Moreover, first experiments on other tasks support its generalizability.
Abstract:Albeit the ubiquitous use of Graph Neural Networks (GNNs) in machine learning (ML) prediction tasks involving graph-structured data, their interpretability remains challenging. In explainable artificial intelligence (XAI), the Shapley Value (SV) is the predominant method to quantify contributions of individual features to a ML model's output. Addressing the limitations of SVs in complex prediction models, Shapley Interactions (SIs) extend the SV to groups of features. In this work, we explain single graph predictions of GNNs with SIs that quantify node contributions and interactions among multiple nodes. By exploiting the GNN architecture, we show that the structure of interactions in node embeddings are preserved for graph prediction. As a result, the exponential complexity of SIs depends only on the receptive fields, i.e. the message-passing ranges determined by the connectivity of the graph and the number of convolutional layers. Based on our theoretical results, we introduce GraphSHAP-IQ, an efficient approach to compute any-order SIs exactly. GraphSHAP-IQ is applicable to popular message passing techniques in conjunction with a linear global pooling and output layer. We showcase that GraphSHAP-IQ substantially reduces the exponential complexity of computing exact SIs on multiple benchmark datasets. Beyond exact computation, we evaluate GraphSHAP-IQ's approximation of SIs on popular GNN architectures and compare with existing baselines. Lastly, we visualize SIs of real-world water distribution networks and molecule structures using a SI-Graph.
Abstract:We train Fourier Neural Operator (FNO) surrogate models for Rayleigh-B\'enard Convection (RBC), a model for convection processes that occur in nature and industrial settings. We compare the prediction accuracy and model properties of FNO surrogates to two popular surrogates used in fluid dynamics: the Dynamic Mode Decomposition and the Linearly-Recurrent Autoencoder Network. We regard Direct Numerical Simulations (DNS) of the RBC equations as the ground truth on which the models are trained and evaluated in different settings. The FNO performs favorably when compared to the DMD and LRAN and its predictions are fast and highly accurate for this task. Additionally, we show its zero-shot super-resolution ability for the convection dynamics. The FNO model has a high potential to be used in downstream tasks such as flow control in RBC.
Abstract:Feature-based explanations, using perturbations or gradients, are a prevalent tool to understand decisions of black box machine learning models. Yet, differences between these methods still remain mostly unknown, which limits their applicability for practitioners. In this work, we introduce a unified framework for local and global feature-based explanations using two well-established concepts: functional ANOVA (fANOVA) from statistics, and the notion of value and interaction from cooperative game theory. We introduce three fANOVA decompositions that determine the influence of feature distributions, and use game-theoretic measures, such as the Shapley value and interactions, to specify the influence of higher-order interactions. Our framework combines these two dimensions to uncover similarities and differences between a wide range of explanation techniques for features and groups of features. We then empirically showcase the usefulness of our framework on synthetic and real-world datasets.
Abstract:Besides the classical offline setup of machine learning, stream learning constitutes a well-established setup where data arrives over time in potentially non-stationary environments. Concept drift, the phenomenon that the underlying distribution changes over time poses a significant challenge. Yet, despite high practical relevance, there is little to no foundational theory for learning in the drifting setup comparable to classical statistical learning theory in the offline setting. This can be attributed to the lack of an underlying object comparable to a probability distribution as in the classical setup. While there exist approaches to transfer ideas to the streaming setup, these start from a data perspective rather than an algorithmic one. In this work, we suggest a new model of data over time that is aimed at the algorithm's perspective. Instead of defining the setup using time points, we utilize a window-based approach that resembles the inner workings of most stream learning algorithms. We compare our framework to others from the literature on a theoretical basis, showing that in many cases both model the same situation. Furthermore, we perform a numerical evaluation and showcase an application in the domain of critical infrastructure.
Abstract:This paper introduces Virtual Try-Off (VTOFF), a novel task focused on generating standardized garment images from single photos of clothed individuals. Unlike traditional Virtual Try-On (VTON), which digitally dresses models, VTOFF aims to extract a canonical garment image, posing unique challenges in capturing garment shape, texture, and intricate patterns. This well-defined target makes VTOFF particularly effective for evaluating reconstruction fidelity in generative models. We present TryOffDiff, a model that adapts Stable Diffusion with SigLIP-based visual conditioning to ensure high fidelity and detail retention. Experiments on a modified VITON-HD dataset show that our approach outperforms baseline methods based on pose transfer and virtual try-on with fewer pre- and post-processing steps. Our analysis reveals that traditional image generation metrics inadequately assess reconstruction quality, prompting us to rely on DISTS for more accurate evaluation. Our results highlight the potential of VTOFF to enhance product imagery in e-commerce applications, advance generative model evaluation, and inspire future work on high-fidelity reconstruction. Demo, code, and models are available at: https://rizavelioglu.github.io/tryoffdiff/
Abstract:Concept drift refers to the change of data distributions over time. While drift poses a challenge for learning models, requiring their continual adaption, it is also relevant in system monitoring to detect malfunctions, system failures, and unexpected behavior. In the latter case, the robust and reliable detection of drifts is imperative. This work studies the shortcomings of commonly used drift detection schemes. We show how to construct data streams that are drifting without being detected. We refer to those as drift adversarials. In particular, we compute all possible adversairals for common detection schemes and underpin our theoretical findings with empirical evaluations.
Abstract:Recent advances in AI -- including generative approaches -- have resulted in technology that can support humans in scientific discovery and decision support but may also disrupt democracies and target individuals. The responsible use of AI increasingly shows the need for human-AI teaming, necessitating effective interaction between humans and machines. A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise. In cognitive science, human generalisation commonly involves abstraction and concept learning. In contrast, AI generalisation encompasses out-of-domain generalisation in machine learning, rule-based reasoning in symbolic AI, and abstraction in neuro-symbolic AI. In this perspective paper, we combine insights from AI and cognitive science to identify key commonalities and differences across three dimensions: notions of generalisation, methods for generalisation, and evaluation of generalisation. We map the different conceptualisations of generalisation in AI and cognitive science along these three dimensions and consider their role in human-AI teaming. This results in interdisciplinary challenges across AI and cognitive science that must be tackled to provide a foundation for effective and cognitively supported alignment in human-AI teaming scenarios.
Abstract:As relevant examples such as the future criminal detection software [1] show, fairness of AI-based and social domain affecting decision support tools constitutes an important area of research. In this contribution, we investigate the applications of AI to socioeconomically relevant infrastructures such as those of water distribution networks (WDNs), where fairness issues have yet to gain a foothold. To establish the notion of fairness in this domain, we propose an appropriate definition of protected groups and group fairness in WDNs as an extension of existing definitions. We demonstrate that typical methods for the detection of leakages in WDNs are unfair in this sense. Further, we thus propose a remedy to increase the fairness which can be applied even to non-differentiable ensemble classification methods as used in this context.
Abstract:Research on methods for planning and controlling water distribution networks gains increasing relevance as the availability of drinking water will decrease as a consequence of climate change. So far, the majority of approaches is based on hydraulics and engineering expertise. However, with the increasing availability of sensors, machine learning techniques constitute a promising tool. This work presents the main tasks in water distribution networks, discusses how they relate to machine learning and analyses how the particularities of the domain pose challenges to and can be leveraged by machine learning approaches. Besides, it provides a technical toolkit by presenting evaluation benchmarks and a structured survey of the exemplary task of leakage detection and localization.