Abstract:Drinking water is a vital resource for humanity, and thus, Water Distribution Networks (WDNs) are considered critical infrastructures in modern societies. The operation of WDNs is subject to diverse challenges such as water leakages and contamination, cyber/physical attacks, high energy consumption during pump operation, etc. With model-based methods reaching their limits due to various uncertainty sources, AI methods offer promising solutions to those challenges. In this work, we introduce a Python toolbox for complex scenario modeling \& generation such that AI researchers can easily access challenging problems from the drinking water domain. Besides providing a high-level interface for the easy generation of hydraulic and water quality scenario data, it also provides easy access to popular event detection benchmarks and an environment for developing control algorithms.
Abstract:Numerous real-world problems from a diverse set of application areas exist that exhibit temporal dependencies. We focus on a specific type of time series classification which we refer to as aggregated time series classification. We consider an aggregated sequence of a multi-variate time series, and propose a methodology to make predictions based solely on the aggregated information. As a case study, we apply our methodology to the challenging problem of household water end-use dissagregation when using non-intrusive water monitoring. Our methodology does not require a-priori identification of events, and to our knowledge, it is considered for the first time. We conduct an extensive experimental study using a residential water-use simulator, involving different machine learning classifiers, multi-label classification methods, and successfully demonstrate the effectiveness of our methodology.