Abstract:With the growing complexity of Cyber-Physical Systems (CPS) and the integration of Internet of Things (IoT), the use of sensors for online monitoring generates large volume of multivariate time series (MTS) data. Consequently, the need for robust anomaly diagnosis in MTS is paramount to maintaining system reliability and safety. While significant advancements have been made in anomaly detection, localization remains a largely underexplored area, though crucial for intelligent decision-making. This paper introduces a novel transformer-based model for unsupervised anomaly diagnosis in MTS, with a focus on improving localization performance, through an in-depth analysis of the self-attention mechanism's learning behavior under both normal and anomalous conditions. We formulate the anomaly localization problem as a three-stage process: time-step, window, and segment-based. This leads to the development of the Space-Time Anomaly Score (STAS), a new metric inspired by the connection between transformer latent representations and space-time statistical models. STAS is designed to capture individual anomaly behaviors and inter-series dependencies, delivering enhanced localization performance. Additionally, the Statistical Feature Anomaly Score (SFAS) complements STAS by analyzing statistical features around anomalies, with their combination helping to reduce false alarms. Experiments on real world and synthetic datasets illustrate the model's superiority over state-of-the-art methods in both detection and localization tasks.
Abstract:Water Distribution Networks (WDNs) are vital infrastructures, and contamination poses serious public health risks. Harmful substances can interact with disinfectants like chlorine, making chlorine monitoring essential for detecting contaminants. However, chlorine sensors often become unreliable and require frequent calibration. This study introduces the Dual-Threshold Anomaly and Drift Detection (AD&DD) method, an unsupervised approach combining a dual-threshold drift detection mechanism with an LSTM-based Variational Autoencoder(LSTM-VAE) for real-time contamination detection. Tested on two realistic WDNs, AD&DD effectively identifies anomalies with sensor offsets as concept drift, and outperforms other methods. A proposed decentralized architecture enables accurate contamination detection and localization by deploying AD&DD on selected nodes.
Abstract:Accurate water consumption forecasting is a crucial tool for water utilities and policymakers, as it helps ensure a reliable supply, optimize operations, and support infrastructure planning. Urban Water Distribution Networks (WDNs) are divided into District Metered Areas (DMAs), where water flow is monitored to efficiently manage resources. This work focuses on short-term forecasting of DMA consumption using deep learning and aims to address two key challenging issues. First, forecasting based solely on a DMA's historical data may lack broader context and provide limited insights. Second, DMAs may experience sensor malfunctions providing incorrect data, or some DMAs may not be monitored at all due to computational costs, complicating accurate forecasting. We propose a novel method that first identifies DMAs with correlated consumption patterns and then uses these patterns, along with the DMA's local data, as input to a deep learning model for forecasting. In a real-world study with data from five DMAs, we show that: i) the deep learning model outperforms a classical statistical model; ii) accurate forecasting can be carried out using only correlated DMAs' consumption patterns; and iii) even when a DMA's local data is available, including correlated DMAs' data improves accuracy.
Abstract:Data stream mining aims at extracting meaningful knowledge from continually evolving data streams, addressing the challenges posed by nonstationary environments, particularly, concept drift which refers to a change in the underlying data distribution over time. Graph structures offer a powerful modelling tool to represent complex systems, such as, critical infrastructure systems and social networks. Learning from graph streams becomes a necessity to understand the dynamics of graph structures and to facilitate informed decision-making. This work introduces a novel method for graph stream classification which operates under the general setting where a data generating process produces graphs with varying nodes and edges over time. The method uses incremental learning for continual model adaptation, selecting representative graphs (prototypes) for each class, and creating graph embeddings. Additionally, it incorporates a loss-based concept drift detection mechanism to recalculate graph prototypes when drift is detected.
Abstract:Severe acute respiratory disease SARS-CoV-2 has had a found impact on public health systems and healthcare emergency response especially with respect to making decisions on the most effective measures to be taken at any given time. As demonstrated throughout the last three years with COVID-19, the prediction of the number of positive cases can be an effective way to facilitate decision-making. However, the limited availability of data and the highly dynamic and uncertain nature of the virus transmissibility makes this task very challenging. Aiming at investigating these challenges and in order to address this problem, this work studies data-driven (learning, statistical) methods for incrementally training models to adapt to these nonstationary conditions. An extensive empirical study is conducted to examine various characteristics, such as, performance analysis on a per virus wave basis, feature extraction, "lookback" window size, memory size, all for next-, 7-, and 14-day forecasting tasks. We demonstrate that the incremental learning framework can successfully address the aforementioned challenges and perform well during outbreaks, providing accurate predictions.
Abstract:In our digital universe nowadays, enormous amount of data are produced in a streaming manner in a variety of application areas. These data are often unlabelled. In this case, identifying infrequent events, such as anomalies, poses a great challenge. This problem becomes even more difficult in non-stationary environments, which can cause deterioration of the predictive performance of a model. To address the above challenges, the paper proposes an autoencoder-based incremental learning method with drift detection (strAEm++DD). Our proposed method strAEm++DD leverages on the advantages of both incremental learning and drift detection. We conduct an experimental study using real-world and synthetic datasets with severe or extreme class imbalance, and provide an empirical analysis of strAEm++DD. We further conduct a comparative study, showing that the proposed method significantly outperforms existing baseline and advanced methods.
Abstract:The phenomena of concept drift refers to a change of the data distribution affecting the data stream of future samples -- such non-stationary environments are often encountered in the real world. Consequently, learning models operating on the data stream might become obsolete, and need costly and difficult adjustments such as retraining or adaptation. Existing methods to address concept drift are, typically, categorised as active or passive. The former continually adapt a model using incremental learning, while the latter perform a complete model retraining when a drift detection mechanism triggers an alarm. We depart from the traditional avenues and propose for the first time an alternative approach which "unlearns" the effects of the concept drift. Specifically, we propose an autoencoder-based method for "unlearning" the concept drift in an unsupervised manner, without having to retrain or adapt any of the learning models operating on the data.
Abstract:There is an emerging need for predictive models to be trained on-the-fly, since in numerous machine learning applications data are arriving in an online fashion. A critical challenge encountered is that of limited availability of ground truth information (e.g., labels in classification tasks) as new data are observed one-by-one online, while another significant challenge is that of class imbalance. This work introduces the novel Augmented Queues method, which addresses the dual-problem by combining in a synergistic manner online active learning, data augmentation, and a multi-queue memory to maintain separate and balanced queues for each class. We perform an extensive experimental study using image and time-series augmentations, in which we examine the roles of the active learning budget, memory size, imbalance level, and neural network type. We demonstrate two major advantages of Augmented Queues. First, it does not reserve additional memory space as the generation of synthetic data occurs only at training times. Second, learning models have access to more labelled data without the need to increase the active learning budget and / or the original memory size. Learning on-the-fly poses major challenges which, typically, hinder the deployment of learning models. Augmented Queues significantly improves the performance in terms of learning quality and speed. Our code is made publicly available.
Abstract:In real-world applications, the process generating the data might suffer from nonstationary effects (e.g., due to seasonality, faults affecting sensors or actuators, and changes in the users' behaviour). These changes, often called concept drift, might induce severe (potentially catastrophic) impacts on trained learning models that become obsolete over time, and inadequate to solve the task at hand. Learning in presence of concept drift aims at designing machine and deep learning models that are able to track and adapt to concept drift. Typically, techniques to handle concept drift are either active or passive, and traditionally, these have been considered to be mutually exclusive. Active techniques use an explicit drift detection mechanism, and re-train the learning algorithm when concept drift is detected. Passive techniques use an implicit method to deal with drift, and continually update the model using incremental learning. Differently from what present in the literature, we propose a hybrid alternative which merges the two approaches, hence, leveraging on their advantages. The proposed method called Hybrid-Adaptive REBAlancing (HAREBA) significantly outperforms strong baselines and state-of-the-art methods in terms of learning quality and speed; we experiment how it is effective under severe class imbalance levels too.
Abstract:We have witnessed in recent years an ever-growing volume of information becoming available in a streaming manner in various application areas. As a result, there is an emerging need for online learning methods that train predictive models on-the-fly. A series of open challenges, however, hinder their deployment in practice. These are, learning as data arrive in real-time one-by-one, learning from data with limited ground truth information, learning from nonstationary data, and learning from severely imbalanced data, while occupying a limited amount of memory for data storage. We propose the ActiSiamese algorithm, which addresses these challenges by combining online active learning, siamese networks, and a multi-queue memory. It develops a new density-based active learning strategy which considers similarity in the latent (rather than the input) space. We conduct an extensive study that compares the role of different active learning budgets and strategies, the performance with/without memory, the performance with/without ensembling, in both synthetic and real-world datasets, under different data nonstationarity characteristics and class imbalance levels. ActiSiamese outperforms baseline and state-of-the-art algorithms, and is effective under severe imbalance, even only when a fraction of the arriving instances' labels is available. We publicly release our code to the community.