Abstract:Drinking water is a vital resource for humanity, and thus, Water Distribution Networks (WDNs) are considered critical infrastructures in modern societies. The operation of WDNs is subject to diverse challenges such as water leakages and contamination, cyber/physical attacks, high energy consumption during pump operation, etc. With model-based methods reaching their limits due to various uncertainty sources, AI methods offer promising solutions to those challenges. In this work, we introduce a Python toolbox for complex scenario modeling \& generation such that AI researchers can easily access challenging problems from the drinking water domain. Besides providing a high-level interface for the easy generation of hydraulic and water quality scenario data, it also provides easy access to popular event detection benchmarks and an environment for developing control algorithms.
Abstract:Smart metering of domestic water consumption to continuously monitor the usage of different appliances has been shown to have an impact on people's behavior towards water conservation. However, the installation of multiple sensors to monitor each appliance currently has a high initial cost and as a result, monitoring consumption from different appliances using sensors is not cost-effective. To address this challenge, studies have focused on analyzing measurements of the total domestic consumption using Machine Learning (ML) methods, to disaggregate water usage into each appliance. Identifying which appliances are in use through ML is challenging since their operation may be overlapping, while specific appliances may operate with intermittent flow, making individual consumption events hard to distinguish. Moreover, ML approaches require large amounts of labeled input data to train their models, which are typically not available for a single household, while usage characteristics may vary in different regions. In this work, we initially propose a data model that generates synthetic time series based on regional water usage characteristics and resolution to overcome the need for a large training dataset with real labeled data. The method requires a small number of real labeled data from the studied region. Following this, we propose a new algorithm for classifying single and overlapping household water usage events, using the total domestic consumption measurements.
Abstract:Numerous real-world problems from a diverse set of application areas exist that exhibit temporal dependencies. We focus on a specific type of time series classification which we refer to as aggregated time series classification. We consider an aggregated sequence of a multi-variate time series, and propose a methodology to make predictions based solely on the aggregated information. As a case study, we apply our methodology to the challenging problem of household water end-use dissagregation when using non-intrusive water monitoring. Our methodology does not require a-priori identification of events, and to our knowledge, it is considered for the first time. We conduct an extensive experimental study using a residential water-use simulator, involving different machine learning classifiers, multi-label classification methods, and successfully demonstrate the effectiveness of our methodology.