Abstract:With the growing complexity of Cyber-Physical Systems (CPS) and the integration of Internet of Things (IoT), the use of sensors for online monitoring generates large volume of multivariate time series (MTS) data. Consequently, the need for robust anomaly diagnosis in MTS is paramount to maintaining system reliability and safety. While significant advancements have been made in anomaly detection, localization remains a largely underexplored area, though crucial for intelligent decision-making. This paper introduces a novel transformer-based model for unsupervised anomaly diagnosis in MTS, with a focus on improving localization performance, through an in-depth analysis of the self-attention mechanism's learning behavior under both normal and anomalous conditions. We formulate the anomaly localization problem as a three-stage process: time-step, window, and segment-based. This leads to the development of the Space-Time Anomaly Score (STAS), a new metric inspired by the connection between transformer latent representations and space-time statistical models. STAS is designed to capture individual anomaly behaviors and inter-series dependencies, delivering enhanced localization performance. Additionally, the Statistical Feature Anomaly Score (SFAS) complements STAS by analyzing statistical features around anomalies, with their combination helping to reduce false alarms. Experiments on real world and synthetic datasets illustrate the model's superiority over state-of-the-art methods in both detection and localization tasks.
Abstract:We propose the Cooperative Aerial Robot Inspection Challenge (CARIC), a simulation-based benchmark for motion planning algorithms in heterogeneous multi-UAV systems. CARIC features UAV teams with complementary sensors, realistic constraints, and evaluation metrics prioritizing inspection quality and efficiency. It offers a ready-to-use perception-control software stack and diverse scenarios to support the development and evaluation of task allocation and motion planning algorithms. Competitions using CARIC were held at IEEE CDC 2023 and the IROS 2024 Workshop on Multi-Robot Perception and Navigation, attracting innovative solutions from research teams worldwide. This paper examines the top three teams from CDC 2023, analyzing their exploration, inspection, and task allocation strategies while drawing insights into their performance across scenarios. The results highlight the task's complexity and suggest promising directions for future research in cooperative multi-UAV systems.
Abstract:Water Distribution Networks (WDNs) are vital infrastructures, and contamination poses serious public health risks. Harmful substances can interact with disinfectants like chlorine, making chlorine monitoring essential for detecting contaminants. However, chlorine sensors often become unreliable and require frequent calibration. This study introduces the Dual-Threshold Anomaly and Drift Detection (AD&DD) method, an unsupervised approach combining a dual-threshold drift detection mechanism with an LSTM-based Variational Autoencoder(LSTM-VAE) for real-time contamination detection. Tested on two realistic WDNs, AD&DD effectively identifies anomalies with sensor offsets as concept drift, and outperforms other methods. A proposed decentralized architecture enables accurate contamination detection and localization by deploying AD&DD on selected nodes.
Abstract:Accurate water consumption forecasting is a crucial tool for water utilities and policymakers, as it helps ensure a reliable supply, optimize operations, and support infrastructure planning. Urban Water Distribution Networks (WDNs) are divided into District Metered Areas (DMAs), where water flow is monitored to efficiently manage resources. This work focuses on short-term forecasting of DMA consumption using deep learning and aims to address two key challenging issues. First, forecasting based solely on a DMA's historical data may lack broader context and provide limited insights. Second, DMAs may experience sensor malfunctions providing incorrect data, or some DMAs may not be monitored at all due to computational costs, complicating accurate forecasting. We propose a novel method that first identifies DMAs with correlated consumption patterns and then uses these patterns, along with the DMA's local data, as input to a deep learning model for forecasting. In a real-world study with data from five DMAs, we show that: i) the deep learning model outperforms a classical statistical model; ii) accurate forecasting can be carried out using only correlated DMAs' consumption patterns; and iii) even when a DMA's local data is available, including correlated DMAs' data improves accuracy.
Abstract:Drinking water is a vital resource for humanity, and thus, Water Distribution Networks (WDNs) are considered critical infrastructures in modern societies. The operation of WDNs is subject to diverse challenges such as water leakages and contamination, cyber/physical attacks, high energy consumption during pump operation, etc. With model-based methods reaching their limits due to various uncertainty sources, AI methods offer promising solutions to those challenges. In this work, we introduce a Python toolbox for complex scenario modeling \& generation such that AI researchers can easily access challenging problems from the drinking water domain. Besides providing a high-level interface for the easy generation of hydraulic and water quality scenario data, it also provides easy access to popular event detection benchmarks and an environment for developing control algorithms.
Abstract:This work introduces a cooperative inspection system designed to efficiently control and coordinate a team of distributed heterogeneous UAV agents for the inspection of 3D structures in cluttered, unknown spaces. Our proposed approach employs a two-stage innovative methodology. Initially, it leverages the complementary sensing capabilities of the robots to cooperatively map the unknown environment. It then generates optimized, collision-free inspection paths, thereby ensuring comprehensive coverage of the structure's surface area. The effectiveness of our system is demonstrated through qualitative and quantitative results from extensive Gazebo-based simulations that closely replicate real-world inspection scenarios, highlighting its ability to thoroughly inspect real-world-like 3D structures.
Abstract:In the rapidly changing environments of disaster response, planning and decision-making for autonomous agents involve complex and interdependent choices. Although recent advancements have improved traditional artificial intelligence (AI) approaches, they often struggle in such settings, particularly when applied to agents operating outside their well-defined training parameters. To address these challenges, we propose an attention-based cognitive architecture inspired by Dual Process Theory (DPT). This framework integrates, in an online fashion, rapid yet heuristic (human-like) responses (System 1) with the slow but optimized planning capabilities of machine intelligence (System 2). We illustrate how a supervisory controller can dynamically determine in real-time the engagement of either system to optimize mission objectives by assessing their performance across a number of distinct attributes. Evaluated for trajectory planning in dynamic environments, our framework demonstrates that this synergistic integration effectively manages complex tasks by optimizing multiple mission objectives.
Abstract:Data stream mining aims at extracting meaningful knowledge from continually evolving data streams, addressing the challenges posed by nonstationary environments, particularly, concept drift which refers to a change in the underlying data distribution over time. Graph structures offer a powerful modelling tool to represent complex systems, such as, critical infrastructure systems and social networks. Learning from graph streams becomes a necessity to understand the dynamics of graph structures and to facilitate informed decision-making. This work introduces a novel method for graph stream classification which operates under the general setting where a data generating process produces graphs with varying nodes and edges over time. The method uses incremental learning for continual model adaptation, selecting representative graphs (prototypes) for each class, and creating graph embeddings. Additionally, it incorporates a loss-based concept drift detection mechanism to recalculate graph prototypes when drift is detected.
Abstract:This work proposes a receding horizon coverage control approach which allows multiple autonomous aerial agents to work cooperatively in order cover the total surface area of a 3D object of interest. The cooperative coverage problem which is posed in this work as an optimal control problem, jointly optimizes the agents' kinematic and camera control inputs, while considering coupling constraints amongst the team of agents which aim at minimizing the duplication of work. To generate look-ahead coverage trajectories over a finite planning horizon, the proposed approach integrates visibility constraints into the proposed coverage controller in order to determine the visible part of the object with respect to the agents' future states. In particular, we show how non-linear and non-convex visibility determination constraints can be transformed into logical constraints which can easily be embedded into a mixed integer optimization program.
Abstract:We propose a novel probabilistically robust controller for the guidance of an unmanned aerial vehicle (UAV) in coverage planning missions, which can simultaneously optimize both the UAV's motion, and camera control inputs for the 3D coverage of a given object of interest. Specifically, the coverage planning problem is formulated in this work as an optimal control problem with logical constraints to enable the UAV agent to jointly: a) select a series of discrete camera field-of-view states which satisfy a set of coverage constraints, and b) optimize its motion control inputs according to a specified mission objective. We show how this hybrid optimal control problem can be solved with standard optimization tools by converting the logical expressions in the constraints into equality/inequality constraints involving only continuous variables. Finally, probabilistic robustness is achieved by integrating the unscented transformation to the proposed controller, thus enabling the design of robust open-loop coverage plans which take into account the future posterior distribution of the UAV's state inside the planning horizon.