Abstract:Research on methods for planning and controlling water distribution networks gains increasing relevance as the availability of drinking water will decrease as a consequence of climate change. So far, the majority of approaches is based on hydraulics and engineering expertise. However, with the increasing availability of sensors, machine learning techniques constitute a promising tool. This work presents the main tasks in water distribution networks, discusses how they relate to machine learning and analyses how the particularities of the domain pose challenges to and can be leveraged by machine learning approaches. Besides, it provides a technical toolkit by presenting evaluation benchmarks and a structured survey of the exemplary task of leakage detection and localization.
Abstract:Fairness is an important objective throughout society. From the distribution of limited goods such as education, over hiring and payment, to taxes, legislation, and jurisprudence. Due to the increasing importance of machine learning approaches in all areas of daily life including those related to health, security, and equity, an increasing amount of research focuses on fair machine learning. In this work, we focus on the fairness of partition- and prototype-based models. The contribution of this work is twofold: 1) we develop a general framework for fair machine learning of partition-based models that does not depend on a specific fairness definition, and 2) we derive a fair version of learning vector quantization (LVQ) as a specific instantiation. We compare the resulting algorithm against other algorithms from the literature on theoretical and real-world data showing its practical relevance.
Abstract:Leakages are a major risk in water distribution networks as they cause water loss and increase contamination risks. Leakage detection is a difficult task due to the complex dynamics of water distribution networks. In particular, small leakages are hard to detect. From a machine-learning perspective, leakages can be modeled as concept drift. Thus, a wide variety of drift detection schemes seems to be a suitable choice for detecting leakages. In this work, we explore the potential of model-loss-based and distribution-based drift detection methods to tackle leakage detection. We additionally discuss the issue of temporal dependencies in the data and propose a way to cope with it when applying distribution-based detection. We evaluate different methods systematically for leakages of different sizes and detection times. Additionally, we propose a first drift-detection-based technique for localizing leakages.
Abstract:Concept drift, i.e., the change of the data generating distribution, can render machine learning models inaccurate. Several works address the phenomenon of concept drift in the streaming context usually assuming that consecutive data points are independent of each other. To generalize to dependent data, many authors link the notion of concept drift to time series. In this work, we show that the temporal dependencies are strongly influencing the sampling process. Thus, the used definitions need major modifications. In particular, we show that the notion of stationarity is not suited for this setup and discuss alternatives. We demonstrate that these alternative formal notions describe the observable learning behavior in numerical experiments.
Abstract:The world surrounding us is subject to constant change. These changes, frequently described as concept drift, influence many industrial and technical processes. As they can lead to malfunctions and other anomalous behavior, which may be safety-critical in many scenarios, detecting and analyzing concept drift is crucial. In this paper, we provide a literature review focusing on concept drift in unsupervised data streams. While many surveys focus on supervised data streams, so far, there is no work reviewing the unsupervised setting. However, this setting is of particular relevance for monitoring and anomaly detection which are directly applicable to many tasks and challenges in engineering. This survey provides a taxonomy of existing work on drift detection. Besides, it covers the current state of research on drift localization in a systematic way. In addition to providing a systematic literature review, this work provides precise mathematical definitions of the considered problems and contains standardized experiments on parametric artificial datasets allowing for a direct comparison of different strategies for detection and localization. Thereby, the suitability of different schemes can be analyzed systematically and guidelines for their usage in real-world scenarios can be provided. Finally, there is a section on the emerging topic of explaining concept drift.
Abstract:Facing climate change the already limited availability of drinking water will decrease in the future rendering drinking water an increasingly scarce resource. Considerable amounts of it are lost through leakages in water transportation and distribution networks. Leakage detection and localization are challenging problems due to the complex interactions and changing demands in water distribution networks. Especially small leakages are hard to pinpoint yet their localization is vital to avoid water loss over long periods of time. While there exist different approaches to solving the tasks of leakage detection and localization, they are relying on various information about the system, e.g. real-time demand measurements and the precise network topology, which is an unrealistic assumption in many real-world scenarios. In contrast, this work attempts leakage localization using pressure measurements only. For this purpose, first, leakages in the water distribution network are modeled employing Bayesian networks, and the system dynamics are analyzed. We then show how the problem is connected to and can be considered through the lens of concept drift. In particular, we argue that model-based explanations of concept drift are a promising tool for localizing leakages given limited information about the network. The methodology is experimentally evaluated using realistic benchmark scenarios.
Abstract:The notion of concept drift refers to the phenomenon that the distribution generating the observed data changes over time. If drift is present, machine learning models can become inaccurate and need adjustment. While there do exist methods to detect concept drift or to adjust models in the presence of observed drift, the question of explaining drift, i.e., describing the potentially complex and high dimensional change of distribution in a human-understandable fashion, has hardly been considered so far. This problem is of importance since it enables an inspection of the most prominent characteristics of how and where drift manifests itself. Hence, it enables human understanding of the change and it increases acceptance of life-long learning models. In this paper, we present a novel technology characterizing concept drift in terms of the characteristic change of spatial features based on various explanation techniques. To do so, we propose a methodology to reduce the explanation of concept drift to an explanation of models that are trained in a suitable way extracting relevant information regarding the drift. This way a large variety of explanation schemes is available. Thus, a suitable method can be selected for the problem of drift explanation at hand. We outline the potential of this approach and demonstrate its usefulness in several examples.
Abstract:Learning from non-stationary data streams is a research direction that gains increasing interest as more data in form of streams becomes available, for example from social media, smartphones, or industrial process monitoring. Most approaches assume that the ground truth of the samples becomes available (possibly with some delay) and perform supervised online learning in the test-then-train scheme. While this assumption might be valid in some scenarios, it does not apply to all settings. In this work, we focus on scarcely labeled data streams and explore the potential of self-labeling in gradually drifting data streams. We formalize this setup and propose a novel online $k$-nn classifier that combines self-labeling and demand-based active learning.
Abstract:The notion of concept drift refers to the phenomenon that the distribution generating the observed data changes over time. If drift is present, machine learning models may become inaccurate and need adjustment. Many technologies for learning with drift rely on the interleaved test-train error (ITTE) as a quantity which approximates the model generalization error and triggers drift detection and model updates. In this work, we investigate in how far this procedure is mathematically justified. More precisely, we relate a change of the ITTE to the presence of real drift, i.e., a changed posterior, and to a change of the training result under the assumption of optimality. We support our theoretical findings by empirical evidence for several learning algorithms, models, and datasets.
Abstract:The notion of concept drift refers to the phenomenon that the data generating distribution changes over time; as a consequence machine learning models may become inaccurate and need adjustment. In this paper we consider the problem of detecting those change points in unsupervised learning. Many unsupervised approaches rely on the discrepancy between the sample distributions of two time windows. This procedure is noisy for small windows, hence prone to induce false positives and not able to deal with more than one drift event in a window. In this paper we rely on structural properties of drift induced signals, which use spectral properties of kernel embedding of distributions. Based thereon we derive a new unsupervised drift detection algorithm, investigate its mathematical properties, and demonstrate its usefulness in several experiments.