Leakages are a major risk in water distribution networks as they cause water loss and increase contamination risks. Leakage detection is a difficult task due to the complex dynamics of water distribution networks. In particular, small leakages are hard to detect. From a machine-learning perspective, leakages can be modeled as concept drift. Thus, a wide variety of drift detection schemes seems to be a suitable choice for detecting leakages. In this work, we explore the potential of model-loss-based and distribution-based drift detection methods to tackle leakage detection. We additionally discuss the issue of temporal dependencies in the data and propose a way to cope with it when applying distribution-based detection. We evaluate different methods systematically for leakages of different sizes and detection times. Additionally, we propose a first drift-detection-based technique for localizing leakages.