Abstract:Animating human face images aims to synthesize a desired source identity in a natural-looking way mimicking a driving video's facial movements. In this context, Generative Adversarial Networks have demonstrated remarkable potential in real-time face reenactment using a single source image, yet are constrained by limited geometry consistency compared to graphic-based approaches. In this paper, we introduce Geometry-guided GAN for Face Animation (G3FA) to tackle this limitation. Our novel approach empowers the face animation model to incorporate 3D information using only 2D images, improving the image generation capabilities of the talking head synthesis model. We integrate inverse rendering techniques to extract 3D facial geometry properties, improving the feedback loop to the generator through a weighted average ensemble of discriminators. In our face reenactment model, we leverage 2D motion warping to capture motion dynamics along with orthogonal ray sampling and volume rendering techniques to produce the ultimate visual output. To evaluate the performance of our G3FA, we conducted comprehensive experiments using various evaluation protocols on VoxCeleb2 and TalkingHead benchmarks to demonstrate the effectiveness of our proposed framework compared to the state-of-the-art real-time face animation methods.
Abstract:The real world exhibits rich structure and detail across many scales of observation. It is difficult, however, to capture and represent a broad spectrum of scales using ordinary images. We devise a novel paradigm for learning a representation that captures an orders-of-magnitude variety of scales from an unstructured collection of ordinary images. We treat this collection as a distribution of scale-space slices to be learned using adversarial training, and additionally enforce coherency across slices. Our approach relies on a multiscale generator with carefully injected procedural frequency content, which allows to interactively explore the emerging continuous scale space. Training across vastly different scales poses challenges regarding stability, which we tackle using a supervision scheme that involves careful sampling of scales. We show that our generator can be used as a multiscale generative model, and for reconstructions of scale spaces from unstructured patches. Significantly outperforming the state of the art, we demonstrate zoom-in factors of up to 256x at high quality and scale consistency.
Abstract:Credal sets are sets of probability distributions that are considered as candidates for an imprecisely known ground-truth distribution. In machine learning, they have recently attracted attention as an appealing formalism for uncertainty representation, in particular due to their ability to represent both the aleatoric and epistemic uncertainty in a prediction. However, the design of methods for learning credal set predictors remains a challenging problem. In this paper, we make use of conformal prediction for this purpose. More specifically, we propose a method for predicting credal sets in the classification task, given training data labeled by probability distributions. Since our method inherits the coverage guarantees of conformal prediction, our conformal credal sets are guaranteed to be valid with high probability (without any assumptions on model or distribution). We demonstrate the applicability of our method to natural language inference, a highly ambiguous natural language task where it is common to obtain multiple annotations per example.
Abstract:While the predictions produced by conformal prediction are set-valued, the data used for training and calibration is supposed to be precise. In the setting of superset learning or learning from partial labels, a variant of weakly supervised learning, it is exactly the other way around: training data is possibly imprecise (set-valued), but the model induced from this data yields precise predictions. In this paper, we combine the two settings by making conformal prediction amenable to set-valued training data. We propose a generalization of the conformal prediction procedure that can be applied to set-valued training and calibration data. We prove the validity of the proposed method and present experimental studies in which it compares favorably to natural baselines.
Abstract:The main objective of Prognostics and Health Management is to estimate the Remaining Useful Lifetime (RUL), namely, the time that a system or a piece of equipment is still in working order before starting to function incorrectly. In recent years, numerous machine learning algorithms have been proposed for RUL estimation, mainly focusing on providing more accurate RUL predictions. However, there are many sources of uncertainty in the problem, such as inherent randomness of systems failure, lack of knowledge regarding their future states, and inaccuracy of the underlying predictive models, making it infeasible to predict the RULs precisely. Hence, it is of utmost importance to quantify the uncertainty alongside the RUL predictions. In this work, we investigate the conformal prediction (CP) framework that represents uncertainty by predicting sets of possible values for the target variable (intervals in the case of RUL) instead of making point predictions. Under very mild technical assumptions, CP formally guarantees that the actual value (true RUL) is covered by the predicted set with a degree of certainty that can be prespecified. We study three CP algorithms to conformalize any single-point RUL predictor and turn it into a valid interval predictor. Finally, we conformalize two single-point RUL predictors, deep convolutional neural networks and gradient boosting, and illustrate their performance on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) data sets.