Abstract:Animating human face images aims to synthesize a desired source identity in a natural-looking way mimicking a driving video's facial movements. In this context, Generative Adversarial Networks have demonstrated remarkable potential in real-time face reenactment using a single source image, yet are constrained by limited geometry consistency compared to graphic-based approaches. In this paper, we introduce Geometry-guided GAN for Face Animation (G3FA) to tackle this limitation. Our novel approach empowers the face animation model to incorporate 3D information using only 2D images, improving the image generation capabilities of the talking head synthesis model. We integrate inverse rendering techniques to extract 3D facial geometry properties, improving the feedback loop to the generator through a weighted average ensemble of discriminators. In our face reenactment model, we leverage 2D motion warping to capture motion dynamics along with orthogonal ray sampling and volume rendering techniques to produce the ultimate visual output. To evaluate the performance of our G3FA, we conducted comprehensive experiments using various evaluation protocols on VoxCeleb2 and TalkingHead benchmarks to demonstrate the effectiveness of our proposed framework compared to the state-of-the-art real-time face animation methods.
Abstract:Scene graphs have been recently introduced into 3D spatial understanding as a comprehensive representation of the scene. The alignment between 3D scene graphs is the first step of many downstream tasks such as scene graph aided point cloud registration, mosaicking, overlap checking, and robot navigation. In this work, we treat 3D scene graph alignment as a partial graph-matching problem and propose to solve it with a graph neural network. We reuse the geometric features learned by a point cloud registration method and associate the clustered point-level geometric features with the node-level semantic feature via our designed feature fusion module. Partial matching is enabled by using a learnable method to select the top-k similar node pairs. Subsequent downstream tasks such as point cloud registration are achieved by running a pre-trained registration network within the matched regions. We further propose a point-matching rescoring method, that uses the node-wise alignment of the 3D scene graph to reweight the matching candidates from a pre-trained point cloud registration method. It reduces the false point correspondences estimated especially in low-overlapping cases. Experiments show that our method improves the alignment accuracy by 10~20% in low-overlap and random transformation scenarios and outperforms the existing work in multiple downstream tasks.
Abstract:3D visual grounding involves matching natural language descriptions with their corresponding objects in 3D spaces. Existing methods often face challenges with accuracy in object recognition and struggle in interpreting complex linguistic queries, particularly with descriptions that involve multiple anchors or are view-dependent. In response, we present the MiKASA (Multi-Key-Anchor Scene-Aware) Transformer. Our novel end-to-end trained model integrates a self-attention-based scene-aware object encoder and an original multi-key-anchor technique, enhancing object recognition accuracy and the understanding of spatial relationships. Furthermore, MiKASA improves the explainability of decision-making, facilitating error diagnosis. Our model achieves the highest overall accuracy in the Referit3D challenge for both the Sr3D and Nr3D datasets, particularly excelling by a large margin in categories that require viewpoint-dependent descriptions. The source code and additional resources for this project are available on GitHub: https://github.com/birdy666/MiKASA-3DVG
Abstract:We present a new, simple yet effective approach to uplift video object detection. We observe that prior works operate on instance-level feature aggregation that imminently neglects the refined pixel-level representation, resulting in confusion among objects sharing similar appearance or motion characteristics. To address this limitation, we propose BoxMask, which effectively learns discriminative representations by incorporating class-aware pixel-level information. We simply consider bounding box-level annotations as a coarse mask for each object to supervise our method. The proposed module can be effortlessly integrated into any region-based detector to boost detection. Extensive experiments on ImageNet VID and EPIC KITCHENS datasets demonstrate consistent and significant improvement when we plug our BoxMask module into numerous recent state-of-the-art methods.
Abstract:This paper demonstrates a visual SLAM system that utilizes point and line cloud for robust camera localization, simultaneously, with an embedded piece-wise planar reconstruction (PPR) module which in all provides a structural map. To build a scale consistent map in parallel with tracking, such as employing a single camera brings the challenge of reconstructing geometric primitives with scale ambiguity, and further introduces the difficulty in graph optimization of bundle adjustment (BA). We address these problems by proposing several run-time optimizations on the reconstructed lines and planes. The system is then extended with depth and stereo sensors based on the design of the monocular framework. The results show that our proposed SLAM tightly incorporates the semantic features to boost both frontend tracking as well as backend optimization. We evaluate our system exhaustively on various datasets, and open-source our code for the community (https://github.com/PeterFWS/Structure-PLP-SLAM).
Abstract:Piece-wise 3D planar reconstruction provides holistic scene understanding of man-made environments, especially for indoor scenarios. Most recent approaches focused on improving the segmentation and reconstruction results by introducing advanced network architectures but overlooked the dual characteristics of piece-wise planes as objects and geometric models. Different from other existing approaches, we start from enforcing cross-task consistency for our multi-task convolutional neural network, PlaneRecNet, which integrates a single-stage instance segmentation network for piece-wise planar segmentation and a depth decoder to reconstruct the scene from a single RGB image. To achieve this, we introduce several novel loss functions (geometric constraint) that jointly improve the accuracy of piece-wise planar segmentation and depth estimation. Meanwhile, a novel Plane Prior Attention module is used to guide depth estimation with the awareness of plane instances. Exhaustive experiments are conducted in this work to validate the effectiveness and efficiency of our method.
Abstract:This paper presents a semantic planar SLAM system that improves pose estimation and mapping using cues from an instance planar segmentation network. While the mainstream approaches are using RGB-D sensors, employing a monocular camera with such a system still faces challenges such as robust data association and precise geometric model fitting. In the majority of existing work, geometric model estimation problems such as homography estimation and piece-wise planar reconstruction (PPR) are usually solved by standard (greedy) RANSAC separately and sequentially. However, setting the inlier-outlier threshold is difficult in absence of information about the scene (i.e. the scale). In this work, we revisit these problems and argue that two mentioned geometric models (homographies/3D planes) can be solved by minimizing an energy function that exploits the spatial coherence, i.e. with graph-cut optimization, which also tackles the practical issue when the output of a trained CNN is inaccurate. Moreover, we propose an adaptive parameter setting strategy based on our experiments, and report a comprehensive evaluation on various open-source datasets.
Abstract:This paper demonstrates a system capable of combining a sparse, indirect, monocular visual SLAM, with both offline and real-time Multi-View Stereo (MVS) reconstruction algorithms. This combination overcomes many obstacles encountered by autonomous vehicles or robots employed in agricultural environments, such as overly repetitive patterns, need for very detailed reconstructions, and abrupt movements caused by uneven roads. Furthermore, the use of a monocular SLAM makes our system much easier to integrate with an existing device, as we do not rely on a LiDAR (which is expensive and power consuming), or stereo camera (whose calibration is sensitive to external perturbation e.g. camera being displaced). To the best of our knowledge, this paper presents the first evaluation results for monocular SLAM, and our work further explores unsupervised depth estimation on this specific application scenario by simulating RGB-D SLAM to tackle the scale ambiguity, and shows our approach produces reconstructions that are helpful to various agricultural tasks. Moreover, we highlight that our experiments provide meaningful insight to improve monocular SLAM systems under agricultural settings.