Abstract:Climate change (CC) has attracted increasing attention in NLP in recent years. However, detecting the stance on CC in multimodal data is understudied and remains challenging due to a lack of reliable datasets. To improve the understanding of public opinions and communication strategies, this paper presents MultiClimate, the first open-source manually-annotated stance detection dataset with $100$ CC-related YouTube videos and $4,209$ frame-transcript pairs. We deploy state-of-the-art vision and language models, as well as multimodal models for MultiClimate stance detection. Results show that text-only BERT significantly outperforms image-only ResNet50 and ViT. Combining both modalities achieves state-of-the-art, $0.747$/$0.749$ in accuracy/F1. Our 100M-sized fusion models also beat CLIP and BLIP, as well as the much larger 9B-sized multimodal IDEFICS and text-only Llama3 and Gemma2, indicating that multimodal stance detection remains challenging for large language models. Our code, dataset, as well as supplementary materials, are available at https://github.com/werywjw/MultiClimate.
Abstract:When your robot grasps an object using dexterous hands or grippers, it should understand the Task-Oriented Affordances of the Object(TOAO), as different tasks often require attention to specific parts of the object. To address this challenge, we propose GauTOAO, a Gaussian-based framework for Task-Oriented Affordance of Objects, which leverages vision-language models in a zero-shot manner to predict affordance-relevant regions of an object, given a natural language query. Our approach introduces a new paradigm: "static camera, moving object," allowing the robot to better observe and understand the object in hand during manipulation. GauTOAO addresses the limitations of existing methods, which often lack effective spatial grouping, by extracting a comprehensive 3D object mask using DINO features. This mask is then used to conditionally query gaussians, producing a refined semantic distribution over the object for the specified task. This approach results in more accurate TOAO extraction, enhancing the robot's understanding of the object and improving task performance. We validate the effectiveness of GauTOAO through real-world experiments, demonstrating its capability to generalize across various tasks.
Abstract:Mobile manipulation typically entails the base for mobility, the arm for accurate manipulation, and the camera for perception. It is necessary to follow the principle of Distant Mobility, Close Grasping(DMCG) in holistic control. We propose Embodied Holistic Control for Mobile Manipulation(EHC-MM) with the embodied function of sig(w): By formulating the DMCG principle as a Quadratic Programming (QP) problem, sig(w) dynamically balances the robot's emphasis between movement and manipulation with the consideration of the robot's state and environment. In addition, we propose the Monitor-Position-Based Servoing (MPBS) with sig(w), enabling the tracking of the target during the operation. This approach allows coordinated control between the robot's base, arm, and camera. Through extensive simulations and real-world experiments, our approach significantly improves both the success rate and efficiency of mobile manipulation tasks, achieving a 95.6% success rate in the real-world scenarios and a 52.8% increase in time efficiency.
Abstract:Purpose: This study aims to propose and investigate the feasibility of using Kolmogorov-Arnold Network (KAN) for CEST MRI data analysis (CEST-KAN). Methods: CEST MRI data were acquired from twelve healthy volunteers at 3T. Data from ten subjects were used for training, while the remaining two were reserved for testing. The performance of multi-layer perceptron (MLP) and KAN models with the same network settings were evaluated and compared to the conventional multi-pool Lorentzian fitting (MPLF) method in generating water and multiple CEST contrasts, including amide, relayed nuclear Overhauser effect (rNOE), and magnetization transfer (MT). Results: The water and CEST maps generated by both MLP and KAN were visually comparable to the MPLF results. However, the KAN model demonstrated higher accuracy in extrapolating the CEST fitting metrics, as evidenced by the smaller validation loss during training and smaller absolute error during testing. Voxel-wise correlation analysis showed that all four CEST fitting metrics generated by KAN consistently exhibited higher Pearson coefficients than the MLP results, indicating superior performance. Moreover, the KAN models consistently outperformed the MLP models in varying hidden layer numbers despite longer training time. Conclusion: In this study, we demonstrated for the first time the feasibility of utilizing KAN for CEST MRI data analysis, highlighting its superiority over MLP in this task. The findings suggest that CEST-KAN has the potential to be a robust and reliable post-analysis tool for CEST MRI in clinical settings.
Abstract:Deep convolutional neural networks have been shown to successfully recognize facial emotions for the past years in the realm of computer vision. However, the existing detection approaches are not always reliable or explainable, we here propose our model GiMeFive with interpretations, i.e., via layer activations and gradient-weighted class activation mapping. We compare against the state-of-the-art methods to classify the six facial emotions. Empirical results show that our model outperforms the previous methods in terms of accuracy on two Facial Emotion Recognition (FER) benchmarks and our aggregated FER GiMeFive. Furthermore, we explain our work in real-world image and video examples, as well as real-time live camera streams. Our code and supplementary material are available at https: //github.com/werywjw/SEP-CVDL.
Abstract:Many emerging user-facing services adopt Graph Neural Networks (GNNs) to improve serving accuracy. When the graph used by a GNN model changes, representations (embedding) of nodes in the graph should be updated accordingly. However, the node representation update is too slow, resulting in either long response latency of user queries (the inference is performed after the update completes) or high staleness problem (the inference is performed based on stale data). Our in-depth analysis shows that the slow update is mainly due to neighbor explosion problem in graphs and duplicated computation. Based on such findings, we propose STAG, a GNN serving framework that enables low latency and low staleness of GNN-based services. It comprises a collaborative serving mechanism and an additivity-based incremental propagation strategy. With the collaborative serving mechanism, only part of node representations are updated during the update phase, and the final representations are calculated in the inference phase. It alleviates the neighbor explosion problem. The additivity-based incremental propagation strategy reuses intermediate data during the update phase, eliminating duplicated computation problem. Experimental results show that STAG accelerates the update phase by 1.3x~90.1x, and greatly reduces staleness time with a slight increase in response latency.