Abstract:Multilingual speech foundation models such as Whisper are trained on web-scale data, where data for each language consists of a myriad of regional varieties. However, different regional varieties often employ different scripts to write the same language, rendering speech recognition output also subject to non-determinism in the output script. To mitigate this problem, we show that script is linearly encoded in the activation space of multilingual speech models, and that modifying activations at inference time enables direct control over output script. We find the addition of such script vectors to activations at test time can induce script change even in unconventional language-script pairings (e.g. Italian in Cyrillic and Japanese in Latin script). We apply this approach to inducing post-hoc control over the script of speech recognition output, where we observe competitive performance across all model sizes of Whisper.
Abstract:Reasoning-tuned LLMs utilizing long Chain-of-Thought (CoT) excel at single-answer tasks, yet their ability to model Human Label Variation--which requires capturing probabilistic ambiguity rather than resolving it--remains underexplored. We investigate this through systematic disentanglement experiments on distribution-based tasks, employing Cross-CoT experiments to isolate the effect of reasoning text from intrinsic model priors. We observe a distinct "decoupled mechanism": while CoT improves distributional alignment, final accuracy is dictated by CoT content (99% variance contribution), whereas distributional ranking is governed by model priors (over 80%). Step-wise analysis further shows that while CoT's influence on accuracy grows monotonically during the reasoning process, distributional structure is largely determined by LLM's intrinsic priors. These findings suggest that long CoT serves as a decisive LLM decision-maker for the top option but fails to function as a granular distribution calibrator for ambiguous tasks.
Abstract:High-quality datasets are critical for training and evaluating reliable NLP models. In tasks like natural language inference (NLI), human label variation (HLV) arises when multiple labels are valid for the same instance, making it difficult to separate annotation errors from plausible variation. An earlier framework VARIERR (Weber-Genzel et al., 2024) asks multiple annotators to explain their label decisions in the first round and flag errors via validity judgments in the second round. However, conducting two rounds of manual annotation is costly and may limit the coverage of plausible labels or explanations. Our study proposes a new framework, EVADE, for generating and validating explanations to detect errors using large language models (LLMs). We perform a comprehensive analysis comparing human- and LLM-detected errors for NLI across distribution comparison, validation overlap, and impact on model fine-tuning. Our experiments demonstrate that LLM validation refines generated explanation distributions to more closely align with human annotations, and that removing LLM-detected errors from training data yields improvements in fine-tuning performance than removing errors identified by human annotators. This highlights the potential to scale error detection, reducing human effort while improving dataset quality under label variation.




Abstract:Test-time scaling is a family of techniques to improve LLM outputs at inference time by performing extra computation. To the best of our knowledge, test-time scaling has been limited to domains with verifiably correct answers, like mathematics and coding. We transfer test-time scaling to the LeWiDi-2025 tasks to evaluate annotation disagreements. We experiment with three test-time scaling methods: two benchmark algorithms (Model Averaging and Majority Voting), and a Best-of-N sampling method. The two benchmark methods improve LLM performance consistently on the LeWiDi tasks, but the Best-of-N method does not. Our experiments suggest that the Best-of-N method does not currently transfer from mathematics to LeWiDi tasks, and we analyze potential reasons for this gap.




Abstract:Research on cross-dialectal transfer from a standard to a non-standard dialect variety has typically focused on text data. However, dialects are primarily spoken, and non-standard spellings are known to cause issues in text processing. We compare standard-to-dialect transfer in three settings: text models, speech models, and cascaded systems where speech first gets automatically transcribed and then further processed by a text model. In our experiments, we focus on German and multiple German dialects in the context of written and spoken intent and topic classification. To that end, we release the first dialectal audio intent classification dataset. We find that the speech-only setup provides the best results on the dialect data while the text-only setup works best on the standard data. While the cascaded systems lag behind the text-only models for German, they perform relatively well on the dialectal data if the transcription system generates normalized, standard-like output.




Abstract:Reward hacking, where a reasoning model exploits loopholes in a reward function to achieve high rewards without solving the intended task, poses a significant threat. This behavior may be explicit, i.e. verbalized in the model's chain-of-thought (CoT), or implicit, where the CoT appears benign thus bypasses CoT monitors. To detect implicit reward hacking, we propose TRACE (Truncated Reasoning AUC Evaluation). Our key observation is that hacking occurs when exploiting the loophole is easier than solving the actual task. This means that the model is using less `effort' than required to achieve high reward. TRACE quantifies effort by measuring how early a model's reasoning becomes sufficient to pass a verifier. We progressively truncate a model's CoT at various lengths, force the model to answer, and measure the verifier-passing rate at each cutoff. A hacking model, which takes a shortcut, will achieve a high passing rate with only a small fraction of its CoT, yielding a large area under the accuracy-vs-length curve. TRACE achieves over 65% gains over our strongest 72B CoT monitor in math reasoning, and over 30% gains over a 32B monitor in coding. We further show that TRACE can discover unknown loopholes during training. Overall, TRACE offers a scalable unsupervised approach for oversight where current monitoring methods prove ineffective.
Abstract:Multi-stage information retrieval (IR) has become a widely-adopted paradigm in search. While Large Language Models (LLMs) have been extensively evaluated as second-stage reranking models for monolingual IR, a systematic large-scale comparison is still lacking for cross-lingual IR (CLIR). Moreover, while prior work shows that LLM-based rerankers improve CLIR performance, their evaluation setup relies on lexical retrieval with machine translation (MT) for the first stage. This is not only prohibitively expensive but also prone to error propagation across stages. Our evaluation on passage-level and document-level CLIR reveals that further gains can be achieved with multilingual bi-encoders as first-stage retrievers and that the benefits of translation diminishes with stronger reranking models. We further show that pairwise rerankers based on instruction-tuned LLMs perform competitively with listwise rerankers. To the best of our knowledge, we are the first to study the interaction between retrievers and rerankers in two-stage CLIR with LLMs. Our findings reveal that, without MT, current state-of-the-art rerankers fall severely short when directly applied in CLIR.
Abstract:Access to high-quality labeled data remains a limiting factor in applied supervised learning. While label variation (LV), i.e., differing labels for the same instance, is common, especially in natural language processing, annotation frameworks often still rest on the assumption of a single ground truth. This overlooks human label variation (HLV), the occurrence of plausible differences in annotations, as an informative signal. Similarly, active learning (AL), a popular approach to optimizing the use of limited annotation budgets in training ML models, often relies on at least one of several simplifying assumptions, which rarely hold in practice when acknowledging HLV. In this paper, we examine foundational assumptions about truth and label nature, highlighting the need to decompose observed LV into signal (e.g., HLV) and noise (e.g., annotation error). We survey how the AL and (H)LV communities have addressed -- or neglected -- these distinctions and propose a conceptual framework for incorporating HLV throughout the AL loop, including instance selection, annotator choice, and label representation. We further discuss the integration of large language models (LLM) as annotators. Our work aims to lay a conceptual foundation for HLV-aware active learning, better reflecting the complexities of real-world annotation.
Abstract:Human language production exhibits remarkable richness and variation, reflecting diverse communication styles and intents. However, this variation is often overlooked in summarization evaluation. While having multiple reference summaries is known to improve correlation with human judgments, the impact of using different reference sets on reference-based metrics has not been systematically investigated. This work examines the sensitivity of widely used reference-based metrics in relation to the choice of reference sets, analyzing three diverse multi-reference summarization datasets: SummEval, GUMSum, and DUC2004. We demonstrate that many popular metrics exhibit significant instability. This instability is particularly concerning for n-gram-based metrics like ROUGE, where model rankings vary depending on the reference sets, undermining the reliability of model comparisons. We also collect human judgments on LLM outputs for genre-diverse data and examine their correlation with metrics to supplement existing findings beyond newswire summaries, finding weak-to-no correlation. Taken together, we recommend incorporating reference set variation into summarization evaluation to enhance consistency alongside correlation with human judgments, especially when evaluating LLMs.
Abstract:Knowing how test takers answer items in educational assessments is essential for test development, to evaluate item quality, and to improve test validity. However, this process usually requires extensive pilot studies with human participants. If large language models (LLMs) exhibit human-like response behavior to test items, this could open up the possibility of using them as pilot participants to accelerate test development. In this paper, we evaluate the human-likeness or psychometric plausibility of responses from 18 instruction-tuned LLMs with two publicly available datasets of multiple-choice test items across three subjects: reading, U.S. history, and economics. Our methodology builds on two theoretical frameworks from psychometrics which are commonly used in educational assessment, classical test theory and item response theory. The results show that while larger models are excessively confident, their response distributions can be more human-like when calibrated with temperature scaling. In addition, we find that LLMs tend to correlate better with humans in reading comprehension items compared to other subjects. However, the correlations are not very strong overall, indicating that LLMs should not be used for piloting educational assessments in a zero-shot setting.