Abstract:Open-ended text generation has become a prominent task in natural language processing due to the rise of powerful (large) language models. However, evaluating the quality of these models and the employed decoding strategies remains challenging because of trade-offs among widely used metrics such as coherence, diversity, and perplexity. Decoding methods often excel in some metrics while underperforming in others, complicating the establishment of a clear ranking. In this paper, we present novel ranking strategies within this multicriteria framework. Specifically, we employ benchmarking approaches based on partial orderings and present a new summary metric designed to balance existing automatic indicators, providing a more holistic evaluation of text generation quality. Furthermore, we discuss the alignment of these approaches with human judgments. Our experiments demonstrate that the proposed methods offer a robust way to compare decoding strategies, exhibit similarities with human preferences, and serve as valuable tools in guiding model selection for open-ended text generation tasks. Finally, we suggest future directions for improving evaluation methodologies in text generation. Our codebase, datasets, and models are publicly available.
Abstract:Decoding strategies for large language models (LLMs) are a critical but often underexplored aspect of text generation tasks. Since LLMs produce probability distributions over the entire vocabulary, various decoding methods have been developed to transform these probabilities into coherent and fluent text, each with its own set of hyperparameters. In this study, we present a large-scale, comprehensive analysis of how hyperparameter selection affects text quality in open-ended text generation across multiple LLMs, datasets, and evaluation metrics. Through an extensive sensitivity analysis, we provide practical guidelines for hyperparameter tuning and demonstrate the substantial influence of these choices on text quality. Using three established datasets, spanning factual domains (e.g., news) and creative domains (e.g., fiction), we show that hyperparameter tuning significantly impacts generation quality, though its effects vary across models and tasks. We offer in-depth insights into these effects, supported by both human evaluations and a synthesis of widely-used automatic evaluation metrics.
Abstract:In recent years, large language models (LLMs) have emerged as powerful tools with potential applications in various fields, including software engineering. Within the scope of this research, we evaluate five different state-of-the-art LLMs - Bard, BingChat, ChatGPT, Llama2, and Code Llama - concerning their capabilities for text-to-code generation. In an empirical study, we feed prompts with textual descriptions of coding problems sourced from the programming website LeetCode to the models with the task of creating solutions in Python. Subsequently, the quality of the generated outputs is assessed using the testing functionalities of LeetCode. The results indicate large differences in performance between the investigated models. ChatGPT can handle these typical programming challenges by far the most effectively, surpassing even code-specialized models like Code Llama. To gain further insights, we measure the runtime as well as the memory usage of the generated outputs and compared them to the other code submissions on Leetcode. A detailed error analysis, encompassing a comparison of the differences concerning correct indentation and form of the generated code as well as an assignment of the incorrectly solved tasks to certain error categories allows us to obtain a more nuanced picture of the results and potential for improvement. The results also show a clear pattern of increasingly incorrect produced code when the models are facing a lot of context in the form of longer prompts.
Abstract:To reduce the need for human annotations, large language models (LLMs) have been proposed as judges of the quality of other candidate models. LLM judges are typically evaluated by measuring the correlation with human judgments on generation tasks such as summarization or machine translation. In contrast, we study LLM judges on mathematical reasoning tasks. These tasks require multi-step reasoning, and the correctness of their solutions is verifiable, enabling a more objective evaluation. We perform a detailed performance analysis and find that the used judges are mostly unable to improve task performance but are able to pick the better model. Our analysis uncovers a strong correlation between judgment performance and the candidate model task performance. We observe that judges tend to choose the model of higher quality even if its answer is incorrect. Further, we show that it is possible to use statistics, such as the task performances of the individual models, to predict judgment performance. In an ablation, we either swap or mask the candidate answers and observe that judges often keep the original judgment, providing evidence that judges incorporate writing style in their judgments. In summary, we find that regularities in the judgments are quantifiable using statistical measures and provide various angles on exploiting them.
Abstract:Decoding from the output distributions of large language models to produce high-quality text is a complex challenge in language modeling. Various approaches, such as beam search, sampling with temperature, $k-$sampling, nucleus $p-$sampling, typical decoding, contrastive decoding, and contrastive search, have been proposed to address this problem, aiming to improve coherence, diversity, as well as resemblance to human-generated text. In this study, we introduce adaptive contrastive search, a novel decoding strategy extending contrastive search by incorporating an adaptive degeneration penalty, guided by the estimated uncertainty of the model at each generation step. This strategy is designed to enhance both the creativity and diversity of the language modeling process while at the same time producing coherent and high-quality generated text output. Our findings indicate performance enhancement in both aspects, across different model architectures and datasets, underscoring the effectiveness of our method in text generation tasks. Our code base, datasets, and models are publicly available.
Abstract:Large Language Models (LLMs) have reshaped natural language processing with their impressive capabilities. Their ever-increasing size, however, raised concerns about their effective deployment and the need for LLM compressions. This study introduces the Divergent Token metrics (DTMs), a novel approach for assessing compressed LLMs, addressing the limitations of traditional perplexity or accuracy measures that fail to accurately reflect text generation quality. DTMs focus on token divergence, that allow deeper insights into the subtleties of model compression, i.p. when evaluating component's impacts individually. Utilizing the First Divergent Token metric (FDTM) in model sparsification reveals that a quarter of all attention components can be pruned beyond 90% on the Llama-2 model family, still keeping SOTA performance. For quantization FDTM suggests that over 80% of parameters can naively be transformed to int8 without special outlier management. These evaluations indicate the necessity of choosing appropriate compressions for parameters individually-and that FDTM can identify those-while standard metrics result in deteriorated outcomes.
Abstract:The Bavarian Academy of Sciences and Humanities aims to digitize its Medieval Latin Dictionary. This dictionary entails record cards referring to lemmas in medieval Latin, a low-resource language. A crucial step of the digitization process is the Handwritten Text Recognition (HTR) of the handwritten lemmas found on these record cards. In our work, we introduce an end-to-end pipeline, tailored to the medieval Latin dictionary, for locating, extracting, and transcribing the lemmas. We employ two state-of-the-art (SOTA) image segmentation models to prepare the initial data set for the HTR task. Furthermore, we experiment with different transformer-based models and conduct a set of experiments to explore the capabilities of different combinations of vision encoders with a GPT-2 decoder. Additionally, we also apply extensive data augmentation resulting in a highly competitive model. The best-performing setup achieved a Character Error Rate (CER) of 0.015, which is even superior to the commercial Google Cloud Vision model, and shows more stable performance.
Abstract:Annotating costs of large corpora are still one of the main bottlenecks in empirical social science research. On the one hand, making use of the capabilities of domain transfer allows re-using annotated data sets and trained models. On the other hand, it is not clear how well domain transfer works and how reliable the results are for transfer across different dimensions. We explore the potential of domain transfer across geographical locations, languages, time, and genre in a large-scale database of political manifestos. First, we show the strong within-domain classification performance of fine-tuned transformer models. Second, we vary the genre of the test set across the aforementioned dimensions to test for the fine-tuned models' robustness and transferability. For switching genres, we use an external corpus of transcribed speeches from New Zealand politicians while for the other three dimensions, custom splits of the Manifesto database are used. While BERT achieves the best scores in the initial experiments across modalities, DistilBERT proves to be competitive at a lower computational expense and is thus used for further experiments across time and country. The results of the additional analysis show that (Distil)BERT can be applied to future data with similar performance. Moreover, we observe (partly) notable differences between the political manifestos of different countries of origin, even if these countries share a language or a cultural background.
Abstract:Recent studies have demonstrated how to assess the stereotypical bias in pre-trained English language models. In this work, we extend this branch of research in multiple different dimensions by systematically investigating (a) mono- and multilingual models of (b) different underlying architectures with respect to their bias in (c) multiple different languages. To that end, we make use of the English StereoSet data set (Nadeem et al., 2021), which we semi-automatically translate into German, French, Spanish, and Turkish. We find that it is of major importance to conduct this type of analysis in a multilingual setting, as our experiments show a much more nuanced picture as well as notable differences from the English-only analysis. The main takeaways from our analysis are that mGPT-2 (partly) shows surprising anti-stereotypical behavior across languages, English (monolingual) models exhibit the strongest bias, and the stereotypes reflected in the data set are least present in Turkish models. Finally, we release our codebase alongside the translated data sets and practical guidelines for the semi-automatic translation to encourage a further extension of our work to other languages.
Abstract:Deep active learning (DAL) seeks to reduce annotation costs by enabling the model to actively query instance annotations from which it expects to learn the most. Despite extensive research, there is currently no standardized evaluation protocol for transformer-based language models in the field of DAL. Diverse experimental settings lead to difficulties in comparing research and deriving recommendations for practitioners. To tackle this challenge, we propose the ActiveGLAE benchmark, a comprehensive collection of data sets and evaluation guidelines for assessing DAL. Our benchmark aims to facilitate and streamline the evaluation process of novel DAL strategies. Additionally, we provide an extensive overview of current practice in DAL with transformer-based language models. We identify three key challenges - data set selection, model training, and DAL settings - that pose difficulties in comparing query strategies. We establish baseline results through an extensive set of experiments as a reference point for evaluating future work. Based on our findings, we provide guidelines for researchers and practitioners.