Large Language Models (LLMs) have reshaped natural language processing with their impressive capabilities. Their ever-increasing size, however, raised concerns about their effective deployment and the need for LLM compressions. This study introduces the Divergent Token metrics (DTMs), a novel approach for assessing compressed LLMs, addressing the limitations of traditional perplexity or accuracy measures that fail to accurately reflect text generation quality. DTMs focus on token divergence, that allow deeper insights into the subtleties of model compression, i.p. when evaluating component's impacts individually. Utilizing the First Divergent Token metric (FDTM) in model sparsification reveals that a quarter of all attention components can be pruned beyond 90% on the Llama-2 model family, still keeping SOTA performance. For quantization FDTM suggests that over 80% of parameters can naively be transformed to int8 without special outlier management. These evaluations indicate the necessity of choosing appropriate compressions for parameters individually-and that FDTM can identify those-while standard metrics result in deteriorated outcomes.