Ludwig-Maximilians-Universität München
Abstract:Open-ended text generation has become a prominent task in natural language processing due to the rise of powerful (large) language models. However, evaluating the quality of these models and the employed decoding strategies remains challenging because of trade-offs among widely used metrics such as coherence, diversity, and perplexity. Decoding methods often excel in some metrics while underperforming in others, complicating the establishment of a clear ranking. In this paper, we present novel ranking strategies within this multicriteria framework. Specifically, we employ benchmarking approaches based on partial orderings and present a new summary metric designed to balance existing automatic indicators, providing a more holistic evaluation of text generation quality. Furthermore, we discuss the alignment of these approaches with human judgments. Our experiments demonstrate that the proposed methods offer a robust way to compare decoding strategies, exhibit similarities with human preferences, and serve as valuable tools in guiding model selection for open-ended text generation tasks. Finally, we suggest future directions for improving evaluation methodologies in text generation. Our codebase, datasets, and models are publicly available.
Abstract:We demonstrate that a wide array of machine learning algorithms are specific instances of one single paradigm: reciprocal learning. These instances range from active learning over multi-armed bandits to self-training. We show that all these algorithms do not only learn parameters from data but also vice versa: They iteratively alter training data in a way that depends on the current model fit. We introduce reciprocal learning as a generalization of these algorithms using the language of decision theory. This allows us to study under what conditions they converge. The key is to guarantee that reciprocal learning contracts such that the Banach fixed-point theorem applies. In this way, we find that reciprocal learning algorithms converge at linear rates to an approximately optimal model under relatively mild assumptions on the loss function, if their predictions are probabilistic and the sample adaption is both non-greedy and either randomized or regularized. We interpret these findings and provide corollaries that relate them to specific active learning, self-training, and bandit algorithms.
Abstract:The field of reinforcement learning offers a large variety of concepts and methods to tackle sequential decision-making problems. This variety has become so large that choosing an algorithm for a task at hand can be challenging. In this work, we streamline the process of choosing reinforcement-learning algorithms and action-distribution families. We provide a structured overview of existing methods and their properties, as well as guidelines for when to choose which methods. An interactive version of these guidelines is available online at https://rl-picker.github.io/.
Abstract:Decoding from the output distributions of large language models to produce high-quality text is a complex challenge in language modeling. Various approaches, such as beam search, sampling with temperature, $k-$sampling, nucleus $p-$sampling, typical decoding, contrastive decoding, and contrastive search, have been proposed to address this problem, aiming to improve coherence, diversity, as well as resemblance to human-generated text. In this study, we introduce adaptive contrastive search, a novel decoding strategy extending contrastive search by incorporating an adaptive degeneration penalty, guided by the estimated uncertainty of the model at each generation step. This strategy is designed to enhance both the creativity and diversity of the language modeling process while at the same time producing coherent and high-quality generated text output. Our findings indicate performance enhancement in both aspects, across different model architectures and datasets, underscoring the effectiveness of our method in text generation tasks. Our code base, datasets, and models are publicly available.
Abstract:A wide range of machine learning algorithms iteratively add data to the training sample. Examples include semi-supervised learning, active learning, multi-armed bandits, and Bayesian optimization. We embed this kind of data addition into decision theory by framing data selection as a decision problem. This paves the way for finding Bayes-optimal selections of data. For the illustrative case of self-training in semi-supervised learning, we derive the respective Bayes criterion. We further show that deploying this criterion mitigates the issue of confirmation bias by empirically assessing our method for generalized linear models, semi-parametric generalized additive models, and Bayesian neural networks on simulated and real-world data.
Abstract:A wide range of machine learning algorithms iteratively add data to the training sample. Examples include semi-supervised learning, active learning, multi-armed bandits, and Bayesian optimization. We embed this kind of data addition into decision theory by framing data selection as a decision problem. This paves the way for finding Bayes-optimal selections of data. For the illustrative case of self-training in semi-supervised learning, we derive the respective Bayes criterion. We further show that deploying this criterion mitigates the issue of confirmation bias by empirically assessing our method for generalized linear models, semi-parametric generalized additive models, and Bayesian neural networks on simulated and real-world data.
Abstract:Given the vast number of classifiers that have been (and continue to be) proposed, reliable methods for comparing them are becoming increasingly important. The desire for reliability is broken down into three main aspects: (1) Comparisons should allow for different quality metrics simultaneously. (2) Comparisons should take into account the statistical uncertainty induced by the choice of benchmark suite. (3) The robustness of the comparisons under small deviations in the underlying assumptions should be verifiable. To address (1), we propose to compare classifiers using a generalized stochastic dominance ordering (GSD) and present the GSD-front as an information-efficient alternative to the classical Pareto-front. For (2), we propose a consistent statistical estimator for the GSD-front and construct a statistical test for whether a (potentially new) classifier lies in the GSD-front of a set of state-of-the-art classifiers. For (3), we relax our proposed test using techniques from robust statistics and imprecise probabilities. We illustrate our concepts on the benchmark suite PMLB and on the platform OpenML.
Abstract:We provide a theoretical and computational investigation of the Gamma-Maximin method with soft revision, which was recently proposed as a robust criterion for pseudo-label selection (PLS) in semi-supervised learning. Opposed to traditional methods for PLS we use credal sets of priors ("generalized Bayes") to represent the epistemic modeling uncertainty. These latter are then updated by the Gamma-Maximin method with soft revision. We eventually select pseudo-labeled data that are most likely in light of the least favorable distribution from the so updated credal set. We formalize the task of finding optimal pseudo-labeled data w.r.t. the Gamma-Maximin method with soft revision as an optimization problem. A concrete implementation for the class of logistic models then allows us to compare the predictive power of the method with competing approaches. It is observed that the Gamma-Maximin method with soft revision can achieve very promising results, especially when the proportion of labeled data is low.
Abstract:Bayesian optimization (BO) with Gaussian processes (GP) has become an indispensable algorithm for black box optimization problems. Not without a dash of irony, BO is often considered a black box itself, lacking ways to provide reasons as to why certain parameters are proposed to be evaluated. This is particularly relevant in human-in-the-loop applications of BO, such as in robotics. We address this issue by proposing ShapleyBO, a framework for interpreting BO's proposals by game-theoretic Shapley values.They quantify each parameter's contribution to BO's acquisition function. Exploiting the linearity of Shapley values, we are further able to identify how strongly each parameter drives BO's exploration and exploitation for additive acquisition functions like the confidence bound. We also show that ShapleyBO can disentangle the contributions to exploration into those that explore aleatoric and epistemic uncertainty. Moreover, our method gives rise to a ShapleyBO-assisted human machine interface (HMI), allowing users to interfere with BO in case proposals do not align with human reasoning. We demonstrate this HMI's benefits for the use case of personalizing wearable robotic devices (assistive back exosuits) by human-in-the-loop BO. Results suggest human-BO teams with access to ShapleyBO can achieve lower regret than teams without.
Abstract:We introduce a framework for benchmarking optimizers according to multiple criteria over various test functions. Based on a recently introduced union-free generic depth function for partial orders/rankings, it fully exploits the ordinal information and allows for incomparability. Our method describes the distribution of all partial orders/rankings, avoiding the notorious shortcomings of aggregation. This permits to identify test functions that produce central or outlying rankings of optimizers and to assess the quality of benchmarking suites.